Skip to main content

Low-Rank Models in Visual Analysis

Theories, Algorithms, and Applications

  • 1st Edition - June 5, 2017
  • Latest edition
  • Authors: Zhouchen Lin, Hongyang Zhang
  • Language: English
  • Paperback ISBN:
    9 7 8 - 0 - 1 2 - 8 1 2 7 3 1 - 5
  • eBook ISBN:
    9 7 8 - 0 - 1 2 - 8 1 2 7 3 2 - 2

Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides… Read more

BACK-TO-SCHOOL

Fuel your confidence!

Up to 25% off learning resources

Elsevier academics book covers

Low-Rank Models in Visual Analysis: Theories, Algorithms, and Applications presents the state-of-the-art on low-rank models and their application to visual analysis. It provides insight into the ideas behind the models and their algorithms, giving details of their formulation and deduction. The main applications included are video denoising, background modeling, image alignment and rectification, motion segmentation, image segmentation and image saliency detection. Readers will learn which Low-rank models are highly useful in practice (both linear and nonlinear models), how to solve low-rank models efficiently, and how to apply low-rank models to real problems.

Related books