Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code is needed.
Back to School Savings: Save up to 30% on print books and eBooks. No promo code needed.
Back to School Savings: Save up to 30%
1st Edition - October 10, 2017
Editors: Sophie Laurent, Morteza Mahmoudi
Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application begins with several chapters covering the synthesis, stabilization,… Read more
Immediately download your ebook while waiting for your print delivery. No promo code is needed.
Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application begins with several chapters covering the synthesis, stabilization, physico-chemical characterization and functionalization of iron oxide nanoparticles.
The second part of the book outlines the various biomedical imaging applications that currently take advantage of the magnetic properties of iron oxide nanoparticles. Brief attention is given to potential iron oxide based therapies, while the final chapter covers nanocytotoxicity, which is a key concern wherever exposure to nanomaterials might occur.
This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of iron oxide nanoparticles in biomedicine.
Academics (professors/researchers and graduate students) as well as professionals (engineers) in the fields of materials science, magnetic materials, and medical imaging technology
Part I: Iron oxide nanoparticles
1. Introduction: Metal oxides in biomedical applications
2. Synthesis of metal oxide nanoparticles aimed for biomedical applications (different methods with advantages and disadvantages)
3. Stabilization of the nano-systems (different methods will be explained and discussed)
4. Methods of physico-chemical characterizations (+ examples for each method)
5. Methods of metal nanopacticles functionalizing for biomedical applications
Part II: Biomedical applications
6. MR molecular imaging (from chemistry to cell labeling, inflammation, apoptosis, etc. (e.g., importance of the relaxometric efficiency)
7. Multimodal imaging (MRI/PET, MRI/optical imaging, etc.)
8. Hyperthermia (importance of the magnetic core size, of the coating, etc.)
9. Magnetic particle imaging (MPI) (importance of the homogeneity in size, etc.)
10. Cellular labeling (importance of the coating, of the charge surface, etc)
11. Therapies and treatments (drug delivery, cancer therapy)
12. Protein corona: The challenge at the nanobiointerfaces
13. Nanocytotoxicity
SL
MM