Preface
Acknowledgments
Notes Regarding Sections, Equations, References, and Notation
Chapter 1. Historical Development and Basic Principles of Gas Lasers
1.1. Introduction
1.2. Chronology of Major Advances and Knowledge Gained of Important Basic Selective Excitation Processes
1.3. Fundamental Processes
1.3.1. Mean Free Paths and Collision Cross-Sections
1.3.2. Velocity and Electron-Energy Distributions
1.3.3. Types of Collisions (First and Second Kind)
1.4. The Interaction of Radiation with Matter
1.5. Oscillation Conditions
1.5.1. Dependence of Gain on Wavelength
References
Chapter 2. Selective Excitation Processes in Gas Discharges
2.1. Theoretical Considerations
2.1.1. Transitional Probabilities
2.1.2. Selective Excitation Mechanisms
2.2. Resonant Excitation-Energy Transfer
2.2.1. Excitation Transfer (Atom-Atom)
2.2.2. Vibrational Energy Transfer (Molecule-Molecule)
2.3. Charge Transfer
2.4. Penning Ionization
2.5. Dissociative Excitation Transfer
2.6. Electron Impact
2.7. Charge Neutralization
2.7.1. Dissociative Recombination
2.7.2. Mutual Neutralization
2.8. Line Absorption and Molecular Photodissociation
2.9. Radiative Cascade-Pumping
References
Chapter 3. Gas Discharge Processes
3.1. Introduction
3.2. The Glow Discharge
3.2.1. The Negative Glow
3.2.2. The Positive Column
3.3. RF-Discharges
3.3.1. General Considerations
3.3.2. Properties Determined by the Pressure and Frequency of the Field
3.3.3. Limits of the Diffusion Theory
3.3.4. Average Electron Energy in the RF-Discharge
3.3.5. Translation Discharges
3.4. The Hollow-Cathode Discharge (HCD)
3.4.1. General Considerations
3.4.2. Electron Energy Distribution in the HCD
3.4.3. Excitation Theories
3.4.4. Sputtering Action
3.4.5. Use as a Spectroscopic Source
3.4.6. Excited-States Population in the HCD
3.4.7. Electrical Properties of the HCD
3.5. Pulsed Discharges
3.5.1. Excitation Processes at Breakdown
3.5.2. Excitation Processes in the Afterglow
References
Chapter 4. Specific Neutral Laser Systems
Introduction
4.1. Resonant Excitation-Energy Transfer (Atom-Atom) Lasers
4.1.1. Helium-Neon
4.1.2. 3.067-µm Chlorine
4.2. Dissociative Excitation-Transfer Lasers
4.2.1. Neon-Oxygen
4.2.2. Argon-Oxygen
4.2.3. Helium-Fluorine
4.3. Electron-Impact-Excited Lasers
4.3.1. CW, Noble-Gas
4.3.2. Transient Noble-Gas and Metal-Vapor
4.3.3. Dissociative, Molecular Metal-Vapor Type
4.4. Miscellaneous Lasers
4.4.1. Charge Neutralization Lasers; Sodium-Hydrogen, Potassium-Hydrogen, Pure Oxygen, and Neon-Helium and Argon-Helium
4.4.2. Line-Absorption and Molecular-Photodissociation Lasers; Cesium, Neon, and 1.315-µm Iodine
4.4.3. Radiative Cascade-Pumped Lasers; Helium-Neon, and Neon
References
Chapter 5. Specific Ionized Laser Systems
Introduction
5.1. Resonant Excitation-Energy Transfer Lasers
5.1.1. Helium-Krypton
5.1.2. Neon-Xenon
5.2. Charge-Transfer Lasers
5.2.1. Helium-Mercury
5.2.2. Helium-Cadmium
5.2.3. Helium-Zinc and Helium-Neon-Zinc
5.2.4. Helium-Iodine
5.2.5. Helium-Selenium
5.2.6. Helium- or Neon-Tellurium
5.3. Penning-Reaction Lasers
5.3.1. Helium-Cadmium
5.3.2. Helium-Zinc
5.3.3. Helium-Magnesium
5.4. Electron-Impact-Excited Lasers
5.4.1. Noble-Gas (Argon) Lasers
5.4.2. Pulsed Oscillation Behavior
5.4.3. CW-Oscillation Behavior
5.4.4. Spectroscopy of Ion Lasers
References
Chapter 6. Specific Molecular Laser Systems
Introduction
6.1. Resonant Excitation-Energy Transfer (Molecule-Molecule) Lasers
6.1.1. Nitrogen-Carbon Dioxide
6.1.2. "Pure" Carbon Dioxide
6.1.3. Nitrous Oxide-Nitrogen
6.2. Electron-Impact-Excited Lasers
6.2.1. Hydrogen, Deuterated-Hydrogen, and Deuterium (near-Infrared and Vacuum-UV)
6.2.2. Carbon Monoxide (Infrared, Visible, and Vacuum-UV)
6.2.3. Nitrogen (UV and Near-Infrared)
6.2.4. Noble Gas
6.2.5. Far-Infrared H2O
6.3. Line Absorption Lasers
6.3.1. 10.6-µm CO2, HBr-Laser Pumped
6.3.2. 81.48-µm NH3, N2O-Laser Pumped (Far-Infrared and Submillimeter)
6.3.3. Iodine Vapor, Frequency-Doubled, YAG-Laser Pumped (Visible and near-Infrared)
6.4. Radiative Cascade Lasers
6.4.1. Hydrogen Cyanide, Deuterium Cyanide (Submillimeter)
6.4.2. Far-Infrared SO2
References
Appendix
Electron Temperatures in Mixtures of the Noble Gases for Various Values of pD: Figs. A.1 to A.9 (See Fig. 3.7 for He-Ne Mixture)
Partial Energy-Level Diagrams Showing Laser Transitions: Figs. A.10 to A.25
Laser Transitions in Atomic Species: Tables 1 to 46
References
Laser Transitions in Molecular Species: Tables 47 to 85
References
Index
Other Titles in the Series