Introduction to Continuum Mechanics
- 3rd Edition - November 12, 2012
- Authors: David Rubin, Erhard Krempl, W Michael Lai
- Language: English
- Paperback ISBN:9 7 8 - 0 - 0 8 - 0 4 1 7 0 1 - 1
- eBook ISBN:9 7 8 - 0 - 0 8 - 0 9 8 3 8 7 - 5
Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a… Read more

Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteContinuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions.
Through the addition of more advanced material (solution of classical elasticity problems, constitutive equations for viscoelastic fluids, and finite deformation theory), this popular introduction to modern continuum mechanics has been fully revised to serve a dual purpose: for introductory courses in undergraduate engineering curricula, and for beginning graduate courses.
For graduates and undergraduates in engineering.
Chapter headings and selected subchapters: Prefaces. Introduction. Continuum theory. Contents of continuum mechanics. Tensors. Summation convention, dummy indices. Kronecker delta. Manipulations with the indicial notation. Tensor: a linear transformation. Dyadic product of two vectors. The dual vector of an antisymmetric tensor. Principal scalar invariants of a tensor. Tensor-valued functions of a scalar. Curl of a vector field. Polar coordinates. Kinematics of a Continuum. Description of motions of a continuum. Dilatation. Local rigid body displacements. Components of deformation tensors in other coordinates. Stress. Stress vector. Equations of motion written with respect to the reference configuration. Entropy inequality. The Elastic Solid. Mechanical properties. Linear elastic solid. Reflection of plane elastic waves. Stress concentration due to a small circular hole in a plate under tension. Constitutive equations for anisotropic elastic solid. Constitutive equation for an isotropic elastic solid. Change of frame. Bending of an incompressible rectangular bar. Newtonian Viscous Fluids. Fluids. Streamline, pathline, streakline, steady, unsteady, laminar and turbulent flow. Irrotational flows as solutions of Navier-Stokes equation. One-dimensional flow of a compressible fluid. Integral Formulation of General Principles. Green's theorem. Principle of moment of momentum. Non-Newtonian Fluids. Linear Maxwell fluid. Current configuration as reference configuration. Special single integral type nonlinear constitutive equations. Viscometric flow. Answers to problems. Index.
- Language: English
- Edition: 3
- Published: November 12, 2012
- Imprint: Pergamon
- Paperback ISBN: 9780080417011
- eBook ISBN: 9780080983875
DR
David Rubin
Dr. David Rubin is a retired principal and senior scientist at Weidlinger Associates, a former engineering firm in New York City
Affiliations and expertise
Weidlinger Associates, New York, USA (retired)EK
Erhard Krempl
Affiliations and expertise
Professor Emeritus of Engineering, Rensselaer Polytechnic Institute, Troy, New York, USAWL
W Michael Lai
W. Michael Lai is Professor Emeritus of Mechanical Engineering and Orthpaedic Bioengineering at Columbia University. He received his Ph.D in Engineering Mechanics in 1962 from the University of Michigan. Between 1962 and 1986, he was a faculty member in the Mechanical Engineering Department at Rensselaer Polytechnic Institute. He joined the Columbia faculty in 1987 with a joint appointment between the Department of Mechanical Engineering and the Department of Orthopaedic Surgery. He served as Chairman of the Mechanical Engineering Department from 1996 to 2002 and became Professor Emeritus in 2004. His research field has been in Orthopaedic Bioengineering with a special interest in soft tissue mechanics. He is a Fellow of ASME and a founding Fellow of the American Institute for Biomedical and Biological Engineering (1995).
Affiliations and expertise
Mechanical Engineering & Orthopaedic Bioengineering, Columbia University, New York, USARead Introduction to Continuum Mechanics on ScienceDirect