Skip to main content

Save up to 30% on Elsevier print and eBooks with free shipping. No promo code needed.

Save up to 30% on print and eBooks.

Introduction to Asymptotics and Special Functions

1st Edition - March 28, 1974

Author: F. W. J. Olver

Language: English
eBook ISBN:
9 7 8 - 1 - 4 8 3 2 - 6 7 0 8 - 1

Introduction to Asymptotics and Special Functions is a comprehensive introduction to two important topics in classical analysis: asymptotics and special functions. The integrals of… Read more

Introduction to Asymptotics and Special Functions

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Institutional subscription on ScienceDirect

Request a sales quote
Introduction to Asymptotics and Special Functions is a comprehensive introduction to two important topics in classical analysis: asymptotics and special functions. The integrals of a real variable are discussed, along with contour integrals and differential equations with regular and irregular singularities. The Liouville-Green approximation is also considered. Comprised of seven chapters, this volume begins with an overview of the basic concepts and definitions of asymptotic analysis and special functions, followed by a discussion on integrals of a real variable. Contour integrals are then examined, paying particular attention to Laplace integrals with a complex parameter and Bessel functions of large argument and order. Subsequent chapters focus on differential equations having regular and irregular singularities, with emphasis on Legendre functions as well as Bessel and confluent hypergeometric functions. A chapter devoted to the Liouville-Green approximation tackles asymptotic properties with respect to parameters and to the independent variable, eigenvalue problems, and theorems on singular integral equations. This monograph is intended for students needing only an introductory course to asymptotics and special functions.