LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
High Temperature Coatings, Second Edition, demonstrates how to counteract the thermal effects of rapid corrosion and degradation of exposed materials and equipment that can occur… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
High Temperature Coatings, Second Edition, demonstrates how to counteract the thermal effects of rapid corrosion and degradation of exposed materials and equipment that can occur under high operating temperatures. This is the first true practical guide on the use of thermally protective coatings for high-temperature applications, including the latest developments in materials used for protective coatings. It covers the make-up and behavior of such materials under thermal stress and the methods used for applying them to specific types of substrates, as well as invaluable advice on inspection and repair of existing thermal coatings.
With his long experience in the aerospace gas turbine industry, the author has compiled the very latest in coating materials and coating technologies, as well as hard-to-find guidance on maintaining and repairing thermal coatings, including appropriate inspection protocols. The book is supplemented with the latest reference information and additional support to help readers find more application- and industry-type coatings specifications and uses.
About the AuthorPreface to the Second EditionPreface to the First Edition
Chapter 1. Introduction 1.1 High Temperature Environment ReferencesChapter 2. Fundamental Concepts 2.1 Thermodynamic Concepts 2.2 Concept of Kinetics 2.3 Crystal Structure 2.4 Equilibrium Phases 2.5 Mechanical Behavior ReferencesChapter 3. Substrate Materials 3.1 Temperature Capability of metal, alloys, intermetallics, ceramics, and composites 3.2 Strengthening Mechanisms 3.3 Titanium Alloys 3.4 Steels 3.5 Nickel-Iron Alloys 3.6 Nickel and Cobalt base Superalloys 3.7 Ceramics, Refractory Intermetallics & Composites 3.8 Need for Coatings ReferencesChapter 4. Oxidation 4.1 Oxidation Process 4.2 Oxidation Testing and Evaluation 4.3 Oxidation of Alloys 4.4 Role of Specific Alloying Constituents 4.5 Oxidation in the Presence of Water vapor 4.6 Oxidation of Polycrystalline Alloys versus Single Crystals 4.7 Oxidation of Intermetallic TiAl ReferencesChapter 5. High temperature corrosion 5.1 Hot Corrosion Process 5.2 Hot Corrosion of Metals and Alloys 5.3 Role of Specific Alloying Elements in Hot Corrosion of Ni and Co Based Alloys and 5.4 Influence of Other Contaminants 5.5 Hot Corrosion of TBC 5.6 Hot Corrosion – like Degradation ReferencesChapter 6. Oxidation & corrosion resistant coatings 6.1 Requirements for Metallic Coatings 6.2 Coatings Processes 6.3 Diffusion Coatings 6.4 Overlay Coatings 6.5 Overlay Coatings by Spray and Arc Processes 6.6 Overlay Coatings by Physical Vapor Deposition (PVD) 6.7 Relative Oxidation and Corrosion Resistance of Coatings 6.8 Modeling of Oxidation and Corrosion Life 6.9 Interaction of Erosion – Oxidation and Erosion – Corrosion References Chapter 7. Thermal Barrier Coatings (TBCs) 7.1 Temperature Reduction by TBC 7.2 Materials Requirements for TBC 7.3 Partially Stabilized Zirconia 7.4 Plasma Sprayed TBC 7.5 Electron Beam Physical Vapor deposited (EB-PVD) TBC 7.6 Environmental Barrier Coatings (EBC) ReferencesChapter 8 . Nondestructive Inspection of Coatings 8.1 NDI Techniques ReferencesChapter 9. Coatings repair 9.1 Limits to Coatings Repair 9.2 The Repair Process 9.3 Recoating and Material Restoration ReferencesChapter 10. Field And Simulated Field Experience 10.1 Gas Turbine Engine Application 10.2 Other Applications 10.3 New Field Observation on Gas Turbine Engine Hot section Parts References
APPENDIX A1 Abradable Blade Outer Air Seal (BOAS) A2 Metal and Ceramic Coating Surface Temperature as Functions of Coating Thickness and Ceramic Coating Thermal Conductivity A3 A Simple Microstructure based Model to explain the difference in Thermal Conductivity between APS and EB-PVD TBC A4 Sol Gel Process for deposition of Zirconia based topcoat of TBC
Index
SB