CHAPTER 1. INTRODUCTION TO RECENT ADVANCES, TECHNIQUES AND APPLICATIONS (Michael E. Brown and Patrick K. Gallagher)
1. THE HANDBOOK OF THERMAL ANALYSIS AND
CALORIMETRY 1
2. THE LITERATURE OF THERMAL ANALYSIS AND
CALORIMETRY 2
2.1. Books 2
2.2. Major conferences and their proceedings 3
2.3. Websites 5
3. NOMENCLATURE 6
4. RECENT ADVANCES IN TECHNIQUES 6
4.1. Micro-Thermal Analysis 6
4.2. Pulsed thermal analysis 7
4.3. Fast scanning calorimetry 7
5. ADVANCES IN APPLICATIONS 7
5.1. Quartz-crystal microbalances 7
5.2. Electrical techniques 8
5.3. Heating-stage spectroscopy 8
5.4. Rheology 8
5.5. Catalysis 9
5.6. Nanoparticles 9
6. KINETICS 9
7. ADDITIONAL TOPICS 10
7.1. Thermochemistry 10
7.2. Coordination compounds and inorganics 10
7.3. Thermophysical properties 11
7.4. Polymorphism 11
7.5. Medical applications 11
7.6. Dental materials 12
8. QUALITY CONTROL 12
CHAPTER 2. DEVELOPMENTS IN NOMENCLATURE
(Jean Rouquerol, I. Wadsö, T. Lever and P. Haines)
1. INTRODUCTION 13
2. 2006 ICTAC NOMENCLATURE OF THERMAL ANALYSIS 14
2.1. Scope 14
2.2. Intent 15
2.3. Definition of the field of Thermal Analysis (TA) 15
2.4. Techniques 15
2.5. Terminology and Glossary 16
2.6. Experimental conditions 22
2.7. Symbols used specifically in Thermal Analysis 22
2.8. Overview and historical matters 23
2.9. Recent Members of the ICTAC Nomenclature Committee 24
3. COMMENTS ON THE 2006 ICTAC NOMENCLATURE OF
THERMAL ANALYSIS 24
4. A CONVENIENT NOMENCLATURE FOR CALORIMETERS 28
4.1. Basic representation, criteria and categories 28
4.2. “Passive” adiabatic calorimeters 30
4.3. “Active” adiabatic calorimeters 32
4.4. "Passive" diathermal calorimeters 34
4.5. “Active” diathermal calorimeters 35
5. OTHER POSSIBLE NOMENCLATURES FOR CALORIMETERS 37
5.1. Nomenclature proposed by Swietoslawski in 1933 37
5.2. Nomenclature proposed by Calvet and Prat in 1956 37
5.3. Nomenclature proposed by Evans in 1969 39
5.4. Nomenclature proposed by Skinner in 1969 39
5.5. Nomenclature proposed by Rouquerol and Laffitte in 1972 40
5.6. Nomenclature proposed by Hemminger and Höhne in 1984 41
5.7. Nomenclature proposed by Rouquerol and Zielenkiewicz in 1986 44
5.8. Nomenclature proposed by Tachoire and Médard in 1994 44
5.9. Nomenclature proposed by Wadsö in 1997 45
5.10. Nomenclature proposed by Hemminger and Särge in 1999 46
5.11. Nomenclature proposed by Hansen in 2001 47
5.12. Nomenclature proposed by Matsuo in 2004 48
5.13. Nomenclature proposed by Zielenkiewicz in 2004 50
6. CONCLUSIONS 51
7. REFERENCES 52 - 54
CHAPTER 3. MICRO-THERMAL ANALYSIS AND RELATED TECHNIQUES (Duncan M. Price)
1. INTRODUCTION 55
2. SCANNING THERMAL MICROSCOPY (STHM) 57
2.1. Introduction 57
2.2. Instrumentation for SThM 58
2.3. Probe design 59
2.4. Quantitative SThM 61
2.5. Other SThM techniques 66
3. LOCALISED THERMAL ANALYSIS 67
3.1. Principles 67
3.2. Calibration 68
3.3. Features 69
3.4. Terminology 71
3.5. Applications 71
4. LOCALISED CHEMICAL ANALYSIS 78
4.1. Introduction 78
4.2. Localised evolved gas analysis 78
4.3. Near-field photothermal spectroscopy 82
4.4. Thermally-assisted micro-sampling 83
5. CONCLUSIONS 84
6. REFERENCES 84 - 92
CHAPTER 4. PULSE THERMAL ANALYSIS
(M. Maciejewski and A. Baiker)
1. INTRODUCTION 93
2. EXPERIMENTAL 94
3. CALIBRATION OF SPECTROMETRIC SIGNALS IN
HYPHENATED THERMOANALYTICAL TECHNIQUES 95
3.1. Calibration of gases 95
3.2. Verification of the calibration 98
3.3. Calibration of liquids 99
4. QUANTIFICATION OF THE SPECTROMETRIC SIGNALS
IN A TA-MS-FTIR SYSTEM 101
4.1. Determination of the intrinsic fragmentation in a TA-MS system 101
4.2. Application of PulseTA® for quantification of gas-solid reactions 104
5. INJECTION OF A GAS WHICH REACTS WITH THE SOLID 112
5.1. Investigations of the reduction and oxidation of solids 112
5.2. Investigation of the redox behaviour of solids: reduction
and re-oxidation of CeO2 116
5.3. Investigation of gas-solid reactions 118
5.4. Miscellaneous applications 123
6. INJECTION OF A GAS WHICH ADSORBS ON THE SOLID 124
6.1. Adsorption of ammonia on HZMS-5 zeolite 124
6.2. Investigation of the adsorption and desorption of NH3 on a titania-silica
aerogel 125
6.3. Investigation of adsorption combined with gas-solid reaction 126
6.4. Miscellaneous applications 129
7. CONCLUSIONS 129
8. REFERENCES 130 - 132
CHAPTER 5. THE QUARTZ CRYSTAL MICROBALANCE
(Allan L. Smith)
1. HIGH SENSITIVITY BALANCES: THEIR ROLE IN THERMAL
ANALYSIS AND CALORIMETRY 133
2. EARLY HISTORY OF THE QUARTZ CRYSTAL
MICROBALANCE 134
3. THE LITERATURE OF THERMAL ANALYSIS AND OF THE
QUARTZ CRYSTAL MICROBALANCE 135
4. PRINCIPLES OF OPERATION OF THE QUARTZ CRYSTAL
MICROBALANCE (QCM) 142
5. DETECTION ELECTRONICS 147
5.1. Simple QCM driving circuits 147
5.2. Frequency and damping measurements 148
5.3. Impedance analysis 148
6. IS THE TRANSVERSE SHEAR MODE RESONATOR A TRUE
MICROBALANCE? 148
7. PRACTICAL DETAILS 150
7.1. Calibration 150
7.2. Comparison of gravimetric and Sauerbrey masses 151
7.3. Sample Preparation 152
8. CHEMICAL AND BIOLOGICAL APPLICATIONS OF
THE QCM 152
8.1. Film-thickness monitors in vacuum deposition 152
8.2. The metal/solution interface in electrochemical cells 153
8.3. Faraday Society Discussion No. 107, 1997 154
8.4. Determination of shear and loss modulus at QCM frequencies 155
8.5. Chemical sensors and biosensors 156
8.6. Biological surface science 158
9. SENSORS 159
9.1. Acoustic microsensors – the challenge behind microgravimetry 159
9.2. Piezoelectric sensors 159
10. THE QUARTZ CRYSTAL MICROBALANCE/HEAT
CONDUCTION CALORIMETER 161
10.1. Introduction 161
10.2. Beginnings of QCM/HCC 161
10.3. Development of QCM/HCC 163
10.4. Biological applications 164
10.5. The Masscal Scientific Instruments G1
Microbalance/Calorimeter 164
10.6. Recent applications 165
10.7. Conclusion 165
11. REFERENCES 166 - 170
CHAPTER 6. HEATING STAGE SPECTROSCOPY: INFRARED, RAMAN, ENERGY DISPERSIVE X-RAY AND X-RAY PHOTOELECTRON SPECTROSCOPY (Ray L. Frost and J. Theo Kloprogge)
1. INFRARED EMISSION SPECTROSCOPY 171
1.1. Introduction 171
1.2. The theory behind infrared emission spectroscopy (IES) 173
1.3. Infrared emission spectroscopy of alunite 179
2. HEATING STAGE RAMAN SPECTROSCOPY 182
2.1 Heating stage Raman spectroscopy of weddellite 186
3. THERMAL STUDIES OF MATERIALS USING HEATING
AND COOLING STAGE SCANNING ELECTRON
MICROSCOPY AND ENERGY DISPERSIVE X-RAY
ANALYSIS 188
3.1. Apparatus 188
3.2. Thermal decomposition of weddelite by heating stage SEM
and infrared emission spectroscopy (IES) 191
3.3. Sublimation of urea CH4N2O 196
3.4. Wetting/drying of montmorillonite 198
4. HEATING STAGE PHOTOELECTRON SPECTROSCOPY
(XPS) 200
4.1. Dehydration of calcium oxalate monohydrate CaC2O4.H2O 201
4.2. Calcination of titania/PVA expanded hectorite 202
5. CONCLUSIONS 206
6. ACKNOWLEDGEMENTS 206
7. REFERENCES 206 - 208
CHAPTER 7. ELECTRICAL TECHNIQUES
(Madalena Dionísio and João F. Mano)
1. INTRODUCTION 209
1.1. Dielectric materials in the presence of static electric fields 209
1.2. Application of alternating electric fields 211
2. MEASUREMENT TECHNIQUES 216
2.1. Introduction 216
2.2. Equivalent circuits 217
2.3. Time-domain measurements 219
2.4. Cells 220
2.5. Temperature calibration in dielectric and electrical
measurements 222
3. DIELECTRIC SPECTROSCOPY IN MODEL SYSTEMS AND
ASSIGNMENT OF MOLECULAR MOTIONS 224
3.1 Sub-glass mobility 225
3.2. - Relaxation 231
3.3. Crossover region 235
3.4. Low-frequency processes 240
3.5. Dielectric response in semi-crystalline polymers 247
4. THERMALLY STIMULATED DEPOLARIZATION
CURRENTS 253
5. CONCLUSIONS 259
6. REFERENCES 260 - 268
CHAPTER 8. BENEFITS AND POTENTIALS OF HIGH PERFORMANCE DIFFERENTIAL SCANNING CALORIMETRY (HPer DSC)
(Vincent B.F. Mathot, Geert Vanden Poel and Thijs F.J. Pijpers)
1. INTRODUCTION 269
2. MAJOR CHALLENGES 270
2.1. Introduction 270
2.2. Measuring under realistic conditions 271
2.3. The study of metastability and reorganization 271
3. HIGH-SPEED CALORIMETRY 276
3.1. Instrumental aspects 276
3.2. Temperature calibration 277
3.3. Constancy of the scan rate 282
3.4. Linking experiment with practice and processing 284
3.5. Quantitative measurements 291
3.6. Higher sensitivity; working on minute amounts of material 293
4. CONCLUSIONS 295
5. REFERENCES 295 - 298
CHAPTER 9. DYNAMIC PULSE CALORIMETRY – THERMOPHYSICAL PROPERTIES OF SOLID AND LIQUID METALS AND ALLOYS
(C. Cagran and G. Pottlacher)
1. INTRODUCTION - THERMOPHYSICAL PROPERTIES 299
2. DYNAMIC PULSE CALORIMETRY (PULSE-HEATING) 301
2.1. Historical development and brief description of pulse-heating 301
2.2. Classification of pulse-heating systems and existing systems 302
3. EXPERIMENTAL DESCRIPTION 304
3.1. General information about pulse-heating 304
3.2. Experiment - Basic electrical quantities 308
3.3. Experiment – Derived thermophysical properties 310
3.4. Experiment - Levitation 324
4. EXPERIMENTAL DATA - IRIDIUM 325
5. RECENTLY DEVELOPED (SPECIAL) APPLICATIONS OF PULSE
CALORIMETRY 329
5.1. Extended temperature range by a pulse-calorimeter/DSC combination 329
5.2. Mechanical properties with a Kolsky bar apparatus 330
5.3. Pulse-heating/ laser flash combination 331
5.4. Pulse-heating microcalorimetry 332
6. UNCERTAINTIES 333
6. FURTHER READING 333
7. CONCLUSIONS 334
8. ACKNOWLEDGEMENTS 334
9. REFERENCES 335 - 342
CHAPTER 10. SURFACE PROPERTIES OF NANOPARTICLES
(Piotr Staszczuk)
1. INTRODUCTION 343
1.1. Nanotechnology and nanostructures 343
1.2. Total (energetic and structural) heterogeneity of surfaces 345
1.3. Fractal dimensions of nanoparticles 348
2. PHYSICOCHEMICAL PROPERTIES OF SELECTED
NANOMATERIALS 349
2.1. Carbon nanotubes 349
2.2. Montmorillonites 349
2.3. Zeolites 350
2.4. Superconductor materials 350
3. TECHNIQUES USED 351
3.1. Q-TG thermogravimetry 351
3.2. Surface adsorption 356
3.3. Porosimetry 356
3.4. Calculation of fractal dimensions from sorptometry and
porosimetry data 357
3.5. Atomic force microscopy, (AFM), Scanning electron microscopy (SEM)
and Energy dispersive X-ray spectroscopy (EDX) 358
4. EXAMPLES OF STUDIES ON SELECTED MATERIALS 359
4.1. Carbon nanotubes 359
4.2. Montmorillonites 370
4.3. Aluminas 371
4.4. Fractal dimensions 381
5. SUMMARY 382
6. REFERENCES 384 - 386
CHAPTER 11. HETEROGENEOUS CATALYSIS ON SOLIDS
(Ljiljana Damjanovic and Aline Auroux)
1. INTRODUCTION 387
2. EXPERIMENTAL 388
2.1. Some limitations of the technique for characterizing catalytic sites 394
2.2. Probe molecules most commonly used to characterize catalytic
surfaces 396
2.3. The role and the influence of the probe molecule in determining
adsorption heats 398
3. ACID-BASE PROPERTIES OF CATALYST SURFACES 401
3.1. Zeolites and related materials 401
3.2. Bulk, doped, supported and mixed oxides 408
4. REDOX PROPERTIES OF CATALYST SURFACES 421
4.1. Metals and supported metals 421
4.2. Oxides and supported oxides 424
5. CORRELATION WITH CATALYTIC ACTIVITY 426
6. CONCLUSIONS 430
7. REFERENCES 431 - 438
CHAPTER 12. COORDINATION COMPOUNDS AND INORGANICS
(Stefano Materazzi )
1. INTRODUCTION 439
2. REVIEWS 440
3. USE OF COORDINATION COMPOUNDS AND INORGANICS
TO DEVELOP NEW METHODS 441
4. INORGANICS 445
4.1. Alloys 445
4.2. Arsenates 449
4.3. Borates 450
4.4. Carbonates 451
4.5. Chromates 453
4.6. Iodides 453
4.7. Nitrates and Nitrites 454
4.8. Oxalates 456
4.9. Oxides 460
4.10. Perchlorates 463
4.11. Phosphates 464
4.12. Stannates 465
4.13. Sulfides, Sulfites and Sulfates 466
5. METAL-ORGANIC FRAMEWORKS: COORDINATION
POLYMERS 469
5.1. Introduction 469
5.2. Bismuth 469
5.3. Cadmium 469
5.4. Cobalt 470
5.5. Copper 472
5.6. Iron 477
5.7. Lanthanides 478
5.8. Lead 482
5.9. Lithium 483
5.10. Magnesium 484
5.11. Manganese 485
5.12. Nickel 486
5.13. Palladium 488
5.14. Silver 488
5.15. Sodium 490
5.16. Strontium 490
5.17. Zinc 491
6. REFERENCES 493 - 502
CHAPTER 13. ISOCONVERSIONAL KINETICS
(Sergey Vyazovkin)
1. INTRODUCTION 503
2. ISOCONVERSIONAL METHODS 504
3. CONCEPT OF VARIABLE ACTIVATION ENERGY 508
4. KINETICS OF PHYSICAL PROCESSES 512
4.1. Crystallization 512
4.2. Melt and glass crystallization of polymers 516
4.3. Second-order transitions 518
4.4. Glass transition 519
5. KINETICS OF CHEMICAL PROCESSES 522
5.1. Reversible decompositions 522
5.2. Thermal and thermo-oxidative degradation of polymers 525
5.3. Crosslinking 526
6. ISOCONVERSIONAL METHODS AND THE KINETIC TRIPLET 529
6.1. Is it really needed? 529
6.2. Isoconversional kinetic predictions 529
6.3. Evaluating the pre-exponential factor and the reaction model 532
7. CONCLUSIONS 534
8. REFERENCES 534 - 538
CHAPTER 14. THERMOCHEMISTRY
(M.V. Roux and M. Temprado)
1. INTRODUCTION 539
1.1. The objectives of thermochemistry 539
1.2. Short historical introduction 541
2. EXPERIMENTAL DETERMINATION OF THE ENTHALPIES
OF FORMATION OF ORGANIC COMPOUNDS 542
2.1. Introduction 542
2.2. Combustion calorimetry 542
2.3. Reaction calorimetry 550
2.4. Thermochemistry of phase changes 551
2.5. Additional techniques 554
3. REFERENCE MATERIALS 557
4. THERMOCHEMICAL DATA BASES FOR ORGANIC
COMPOUNDS 558
5. RECENT DEVELOPMENTS IN EXPERIMENTAL TECHNIQUES 559
5.1. Combustion calorimetry 559
5.2. Enthalpies of sublimation and vaporization 560
6. COMPUTATIONAL THERMOCHEMISTRY 561
7. THERMOCHEMISTRY AS A POWERFUL TOOL TO SOLVE
ACTUAL CHEMICAL PROBLEMS 562
7.1. Thermochemistry of cyclobutadiene: Enthalpy of formation, ring
strain, and anti-aromaticity 562
7.2. Thermochemistry of cubane and cuneane 563
7.3. Enthalpy of formation of Buckminsterfullerene, C60 563
7.4. Steric, estereolectronic and electrostatic interactios in oxanes,
thianes and sulfone and sulfoxide derivatives 564
7.5. Keto-enol tautomerism and enthalpy of mixing between tautomers
of acetylacetone 565
7.6. Radical generation by using organometallic complexes of
Group 6 metals 566
7.7. Application to biochemical systems 566
7.8. Thermochemistry of reactions in gas phase for compounds with
important implications as catalysts. 566
8. CONCLUSIONS 567
9. REFERENCES 567 - 578
CHAPTER 15. THERMAL ANALYSIS AND RHEOLOGY
(Mustafa Versan Kok)
1. INTRODUCTION 579
2. PARAFFIN WAXES 580
3. EXPERIMENTAL TECHNIQUES 581
3.1. Introduction 581
3.2. Differential scanning calorimetry (DSC) 582
3.3. Thermomicroscopy and rheology 584
4. APPLICATIONS 584
5. CONCLUSIONS 595
6. REFERENCES 595 - 596
CHAPTER 16. POLYMORPHISM
(Mino R. Caira)
1. INTRODUCTION 597
2. RECENT DEVELOPMENTS IN POLYMORPHIC RESEARCH 599
2.1. Introduction 599
3. THERMAL ANALYSIS IN STUDIES OF CRYSTAL
POLYMORPHISM 606
3.1. Introduction 606
4. RECENT STUDIES 611
4.1. Characterization of polymorphs and polymorphic transformations 611
4.2. Characterization of solvates and desolvation processes 621
5. CONCLUSIONS 626
6. ACKNOWLEDGEMENTS 626
7. REFERENCES 626 - 630
CHAPTER 17. DENTAL MATERIALS
(W.A. Brantley)
1. INTRODUCTION 631
2. NICKEL-TITANIUM ALLOYS IN DENTISTRY 631
2.1. Metallurgy background 631
2.2. Nickel-titanium endodontic instruments 632
2.3. Nickel-titanium orthodontic wires 641
3. DENTAL POLYMER MATERIALS 647
3.1. Silicone maxillofacial materials 647
3.2. Elastomeric impression materials 650
3.3. Orthodontic elastomeric modules 654
3.4. Resin composites and other dental polymers 656
4. ACKNOWLEDGMENTS 658
5. REFERENCES 658 - 662
CHAPTER 18. MEDICAL APPLICATIONS OF THERMAL METHODS
(Beverley D. Glass)
1. INTRODUCTION 663
2. APPLICATION TO PENETRATION OF DRUGS INTO THE SKIN 664
2.1. Introduction 664
2.2. Thermoanalytical techniques and the skin 665
2.3. Thermoanalytical techniques and drug penetration (penetration
enhancers) into the skin 668
3. APPLICATION TO DRUG DELIVERY 675
3.1. Introduction 675
3.2. Thermoanalytical techniques used in drug delivery 675
4. APPLICATION TO IMPLANTS 677
4.1. Introduction 677
4.2. Thermoanalytical techniques used in implants 677
5. APPLICATIONS TO PROSTHETICS 685
5.1. Introduction 685
5.2. Bioprostheses used in heart valves 685
5.3. Bioprostheses used in aortic valves 686
6. MISCELLANEOUS APPLICATIONS 687
6.1. DSC studies on albumins 687
6.2. DSC studies on the human intervertebral disc 688
6.3. DSC studies of human skin from patients with diabetes mellitus (DM) 689
6.4. DSC studies on cartilage destruction by septic arthritis 689
6.5. DSC studies on the effect of tetracaine on erythrocyte membranes 689
6.6. DSC studies on modified poly(urethaneurea) blood sacs 690
7. CONCLUSIONS 690
8. REFERENCES 691 - 694
CHAPTER 19. QUALITY CONTROL
(Donald J. Burlett)
1. INTRODUCTION 695
2. GENERAL CONSIDERATIONS 696
3. POLYMERS 698
4. ORGANIC CHEMICALS 704
5. PHARMACEUTICALS 709
6. FOODS 715
7. INORGANIC CHEMICALS 722
8. METALS 724
9. OTHER REFERENCES 728
10. FUTURE OPPORTUNITIES 729
11. REFERENCES 729 - 732