LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from int… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.
While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to name
just a few, are ubiquitous dynamical concepts throughout the articles.
1. Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators (N. Kopell, G.B. Ermentrout).
2. Invariant manifolds and Lagrangian dynamics in the ocean and
atmosphere (C. Jones, S. Winkler).
3. Geometric singular perturbation analysis of neuronal dynamics (J.E. Rubin, D. Terman).
B. Numerics
4. Numerical continuation, and computation of normal forms (W.-J. Beyn, A. Champneys, E. Doedel, W. Govaerts,Y.A. Kuznetsov, B. Sandstede).
5. Set oriented numerical methods for dynamical systems (M. Dellnitz, O. Junge).
6. Numerics and exponential smallness (V. Gelfreich).
7. Shadowability of chaotic dynamical systems (C. Grebogi, L. Poon, T. Sauer, J.A. Yorke, D. Auerbach).
8. Numerical analysis of dynamical systems (J. Guckenheimer).
C. Topological Methods
9. Conley index (K. Mischaikow, M. Mrozek).
10. Functional differential equations (R.D. Nussbaum).
D. Partial Differential Equations
11. Navier--Stokes equations and dynamical systems (C. Bardos, B. Nicolaenko).
12. The nonlinear Schrödinger equation as both a PDE and a
dynamical system (D. Cai, D.W. McLaughlin, K.T.R. McLaughlin).
13. Pattern formation in gradient systems (P.C. Fife).
14. Blow-up in nonlinear heat equations from the dynamical systems point of view (M. Fila, H. Matano).
15. The Ginzburg--Landau equation in its role as a modulation
equation (A. Mielke).
16. Parabolic equations:
asymptotic behavior and dynamics on invariant manifolds (P. Poláčik).
17.Global attractors in partial differential equations (G. Raugel).
18. Stability of travelling waves (B. Sandstede).
BF