Skip to main content

Save up to 20% on Elsevier print and eBooks with free shipping. No promo code needed.

Save up to 20% on print and eBooks.

Handbook of Complex Analysis

Geometric Function Theory

1st Edition - December 9, 2004

Editor: Reiner Kuhnau

Language: English
Hardback ISBN:
9 7 8 - 0 - 4 4 4 - 5 1 5 4 7 - 6
eBook ISBN:
9 7 8 - 0 - 0 8 - 0 4 9 5 1 7 - 0

Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem,… Read more

Handbook of Complex Analysis

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Institutional subscription on ScienceDirect

Request a sales quote
Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane).