Gaseous Electronics and Gas Lasers deals with the fundamental principles and methods of analysis of weakly ionized gas discharges and gas lasers. The emphasis is on processes occurring in gas discharges and the analytical methods used to calculate important process rates. Detailed analyses of a variety of gas discharges are presented using atomic, ionic, and gas lasers as primary illustrations. Comprised of 12 chapters, this book begins with some initial categorization of gas discharge species and an overview of their interactions. The discussion then turns to an elementary theory of a gas discharge; inelastic collisions; distribution functions and the Boltzmann equation; and transport coefficients. Subsequent chapters focus on the fluid equations; electron-density decay processes; excited species; atomic neutral gas lasers; molecular gas lasers; and ion lasers. The important electron loss processes that determine the behavior of a plasma when the source and loss terms balance are also examined. This monograph will be of value to graduate students, practitioners, and researchers in the fields of physics and engineering, as well as to professionals interested in working with weakly ionized discharges.