LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Free Surface Flow: Environmental Fluid Mechanics introduces a wide range of environmental fluid flows, such as water waves, land runoff, channel flow, and effluent discharge… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Free Surface Flow: Environmental Fluid Mechanics introduces a wide range of environmental fluid flows, such as water waves, land runoff, channel flow, and effluent discharge. The book provides systematic analysis tools and basic skills for study fluid mechanics in natural and constructed environmental flows. As the prediction of changes in free surfaces in rivers, lakes, estuaries and in the ocean directly affects the design of structures that control surface waters, and because planning for the allocation of fresh-water resources in a sustainable manner is an essential goal, this book provides the necessary background and research.
Civil and Environmental Engineering, Coastal Engineering, and Ocean Engineering
1. Basic Concepts
1.1 Introduction
41.1.1 Reductionism 4
1.1.2 Free-Surface Flow Models 6
1.2 Macroscopic Theory of Flow
101.2.1 Fluid Density 10
1.2.2 The Fluid Continuum Hypothesis 11
1.3 Coordinate Systems
151.4 The Laws of Motion
191.4.1 Law of Universal Gravitation 19
1.4.2 Prediction by Asymptotic Approximation 22
1.4.3 Pressure Variation in a Static Fluid 23
1.5 Inertial Frames of Reference
271.5.1 Spacetime, World Lines, and Wave Surfaces 29
1.5.2 Index Notation – The Summation Convention 31
1.6 Euclidean Space
331.6.1 Translation 33
1.6.2 Scaling 33
1.6.3 Reflection 33
1.6.4 Rotation 33
1.6.5 Direction Cosines 34
1.6.6 Rotation in Three-Dimensional Space 35
1.6.7 Matrices 36
1.6.8 Determinants 37
1.6.9 The Levi-Civita Permutation Symbol 38
1.6.10 Index Notation – Range Convention 40
1.7 Simple Harmonic Motion
421.7.1 Exponential Representation 44
1.7.2 Fourier Series 45
1.7.3 Probability Density Functions 47
1.7.4 Spectral Analysis 49
1.8 Cartesian Vectors 52
1.8.1 Eigenvalues and Eigenvectors 52
1.8.2 Flux and the Scalar Product 54
1.8.2.1 Equation of a Plane 56
1.8.3 Vector Product 57
1.8.4 Epsilon-Delta Identities 58
1.8.5 Triple Products 60
1.8.6 Orthogonal Decomposition 62
1.9 Cartesian Tensors
631.9.1 Physical Meaning of Tensors 64
1.9.2 Quadric Cone 64
1.9.3 Stress at a Point 66
1.9.4 Stress on an Oblique Plane 68
1.9.5 Plane Stress 70
1.9.6 Principal Directions 71
1.9.7 Hydrostatic and Deviatoric Stresses 72
1.9.8 Elements of Tensor Algebra 73
1.9.8.1 Addition 73
1.9.8.2 Multiplication 73
1.9.8.3 Contraction 73
1.9.8.4 Symmetry 74
1.9.8.5 Invariants 74
1.9.9 Isotropic Tensors 75
1.9.10 Tensors in General Coordinates 76
1.9.10.1 Basis for Space Vectors 76
1.9.10.2 The Dual Basis 77
1.9.10.3 Tensor Components 77
1.9.11 Polar and Axial Vectors 78
1.10 Stress in a Moving Fluid
801.10.1 Newton’s Law of Viscosity 80
1.10.2 Uniform Shear Flow 81
1.10.3 Coefficient of Dynamic Viscosity 83
1.10.4 No-Slip Condition 84
1.10.5 Other Flux-Gradient Laws 86
Problems
89References
92Notes
932. Kinematics, Composition, and Thermodynamics
2.1 Introduction
962.2 Scalar and Vector Fields
972.2.1 Gradient of a Scalar Field 98
2.2.2 Directional Derivative 99
2.2.3 Divergence of a Vector Field 100
2.2.4 Generalization of Gradient and Divergence 102
2.2.5 Curl of a Vector Field 103
2.2.6 Curl of a Vector Product 106
2.2.7 Scalar Potential 107
2.2.8 Vector Potential 109
2.3 Curvilinear Coordinates
1102.3.1 Cylindrical Coordinates 110
2.3.2 Spherical Coordinates 111
2.4 The Laplacian
1132.4.1 Curvilinear Coordinates 113
2.4.2 Vector Laplacian 114
2.5 Material Coordinates and Derivatives
1152.5.1 Fluid Acceleration 118
2.6 Pathlines and Streamlines
1202.6.1 Stream Surfaces and Streaklines 122
2.6.2 Streamlines in Unsteady Flow 124
2.7 Relative Motion in Eulerian Coordinates
1272.8 Space Curves
1302.8.1 Curvature and Principal Normal 130
2.8.2 Natural Coordinates 133
2.8.3 Flow in a Circular Path 135
2.8.4 Estimation of the Radius of Curvature 136
2.9 Integrals of Vector Fields
1372.9.1 The Rate of Expansion of a Material Volume 137
2.9.2 The Divergence Theorem 138
2.9.3 The Transport Theorem 140
2.9.4 The Leibniz Rule 142
2.9.5 Conservation Laws 142
2.10 Composition
1442.11 Thermodynamic Relations
1462.12 Entropy Changes
1482.12.1 Statistical Definition of Entropy 148
2.13 The Equation of State
1502.13.1 Ideal Gases 151
2.13.2 Pure and Seawater 151
2.14 First Law of Thermodynamics
1542.14.1 Heat Capacities 154
2.15 Second Law of Thermodynamics
1572.15.1 Clausius Inequality 158
2.15.2 The Combined Laws 161
2.15.3 Maxwell Relations 162
2.15.4 Isentropic Processes for Ideal Gases 163
2.15.5 Free Energy 163
2.15.6 Free Enthalpy 164
2.15.7 Equation of State for Internal Energy 166
2.16 Fluid Compressibility
167Problems
168References
171Note
1723. Diffusive Mass Transfer
3.1 Introduction 176
3.2 Fick’s Law of Diffusion
1783.2.1 The Unit Impulse Load 180
3.2.2 Thermal Energy of Solute Particles 182
3.2.3 Brownian Motion 186
3.2.4 Langevin’s Equation of Motion 188
3.2.5 A Heuristic Model for Diffusion 191
3.3 Differential Mass Balance
1943.3.1 Macroscopic Mass Balance 196
3.4 Sources and Sinks
1993.4.1 Distributed Source or Sink 199
3.4.2 Point, Line, and Plane Source or Sink 200
3.5 Sudden Release of Solute in a Channel
2023.5.1 Scales of the Diffusion Equation 203
3.5.2 Dimensional Analysis 205
3.5.3 Similarity Solution 206
3.5.4 Properties of the Diffusion Equation 208
3.6 The Unit Impulse Response Function
2113.6.1 Properties of the Unit Impulse Response Function 214
3.6.2 Gaussian Distribution 215
3.6.3 Non-Gaussian Distributions 216
3.7 Continuous Injection of Mass
2193.7.1 Evolution of an Initial Concentration Profile 222
3.7.2 Spatially Distributed Maintained Source 224
3.8 The Fourier Transform
2253.8.1 Differential Properties 226
3.8.2 Transform of the Diffusion Equation 226
3.8.3 Unit Impulse Load 227
3.8.4 Convolution 228
3.9 Specified Concentration History
2303.9.1 Constant Concentration 233
3.9.2 Linear Increase of Concentration 233
3.9.3 Square-Root Increase of Concentration 233
3.9.4 Exponential Increase of Concentration 233
3.10 Diffusion Coupled With Adsorption
2353.10.1 Diffusion Coupled With Reaction 236
3.11 Transform Methods for Diffusion-Reaction
2373.11.1 Local Transform 237
3.11.2 Integral Transform 237
3.11.3 Laplace Transform 238
3.12 Inertia-Moderated Diffusion
2423.13 Multi-Dimensional Diffusion
2453.14 Boundary Conditions – Method of Images
2483.14.1 Two-Dimensional Problems 249
Problems
254References
2574. Advective Mass Transfer
4.1 Introduction 260
4.2 Advective Mass Balance
2614.2.1 One-Dimensional Advection 262
4.2.2 Depth-Averaged Advection 264
4.2.3 Cross-Sectional Area-Averaged Advection 267
4.3 Fourier Transform of Advection Equation
2684.3.1 Discrete Fourier Transform 269
4.3.2 Discontinuous Concentration Profiles 270
4.4 Advection Coupled With Diffusion
2734.4.1 Specified Upstream Concentration of an Active Solute 274
4.4.2 Transverse Diffusion 276
4.5 Order of Magnitude Analysis
2794.5.1 Steady State Analysis 280
4.6 Mixing in Unidirectional Flow
2834.6.1 Fixed Sources in Unidirectional Flow 284
4.6.1.1 Steady Point Source in an Unbounded Stream 284
4.6.1.2 Steady Line Source in a Stream 286
4.6.1.3 Plane Source in a Stream 290
4.6.2 Steady-State Plane Source 291
4.6.3 Advection-Reaction Equation 293
4.7 Distance Required for Complete Mixing
296Problems
302References
3065. Viscous Fluid Flow
5.1 Introduction
3105.2 Conservation of Mass – Continuity
3115.2.1 Incompressibility Constraint 313
5.3 The Stream Function
3165.3.1 Flow Between Streamlines 317
5.3.2 Axisymmetric Flow 318
5.4 Conservation of Momentum
3205.4.1 Body Forces on a Fluid Element 320
5.4.2 Surface Forces on a Fluid Element 322
5.4.3 Equation of Motion 324
5.4.4 Equation of Momentum 325
5.5 Conservation of Energy
3275.5.1 Equation of Mechanical Energy 327
5.5.2 Total Energy Equation 328
5.5.3 Equation of Internal Energy 330
5.6 Impact of the Velocity Field on a Fluid Element
3325.6.1 The Rate of Strain of a Fluid Element 334
5.6.2 Parallel Shear Flow 336
5.6.2.1 Strain Ellipse 336
5.7 Evolution of a Fluid Element
3395.7.1 Fluid Translation 339
5.7.2 Fluid Dilatation 339
5.7.3 Angular Deformation 340
5.7.4 Rotation of a Rigid Body 341
5.7.5 Fluid Rotation 342
5.8 Stress-Strain Rate Relation – The Stokes Hypothesis
3445.8.1 Pressure in a Moving Fluid 347
5.9 The Incompressible Navier-Stokes Equations
3505.9.1 Pressure Poisson Equation 352
5.9.1.1 Boundary Conditions 354
5.9.2 Cylindrical Coordinates 356
5.9.3 Viscous Dissipation of Energy 356
5.9.4 An Alternative Form of the Thermal Energy Equation 358
5.9.5 Vorticity-Stream Function Formulation 359
5.10 Scaling the Navier-Stokes Equations
3615.10.1 Laminar and Turbulent Flow Regimes 363
5.10.2 Effects of Gravity – The Froude Number 364
5.10.3 Periodic Flow Motion – The Strouhal Number 366
5.11 Fundamental Viscous-Flow Problems
3695.11.1 Flow Driven by a Moving Boundary 369
5.11.1.1 The Rate of Energy Dissipation 371
5.11.2 Flow Between Parallel Walls 372
5.11.3 Two-Layer Flow Between Parallel Walls 373
5.11.4 Unsteady Flow Problems 376
5.11.4.1 Flow Due to a Suddenly Accelerated Plate 376
5.11.4.2 Flow Near an Oscillating Plate 378
5.12 Integral Equations for Fluid Flow
3815.12.1 Macroscopic Volume Balance 381
5.12.2 Macroscopic Momentum Balance 382
5.12.3 Macroscopic Energy Balance 384
5.13 Creeping Flow
3865.13.1 Properties of Creeping Flow 387
5.13.2 The Paint-Scraper Problem 388
5.13.3 Flow Around a Sphere 390
5.13.3.1 Pressure Distribution Around a Sphere 394
5.13.3.2 Stress Distribution Around a Sphere 394
5.13.4 Drag Force on Sphere 396
5.13.5 Fall Velocity 397
5.13.6 Oseen’s Improved Creeping Flow Approximation 397
5.13.7 Hele-Shaw Flow 400
5.13.7.1 Hele-Shaw Flow Around a Cylinder 401
Problems
403References
4066. Ideal Fluid Flow
6.1 Introduction
4106.2 The Velocity Potential
4116.2.0.1 Curvilinear Coordinates 412
6.2.1 Equipotential Surfaces and Lines 412
6.2.2 Harmonic Flow Fields 413
6.2.3 The Stream Function in Irrotational Flow 414
6.2.4 Green’s Identities 415
6.2.5 Elliptic Boundary-Value Problems 416
6.2.6 The Mean-Value Property 416
6.2.7 The Free Space Function 417
6.2.8 The Influence of a Closed Boundary 419
6.2.9 Solution of the Dirichlet Problem 421
6.3 Euler’s Equations
4266.3.1 Boundary Conditions for Ideal Fluid Flow 426
6.3.2 The Role of Vorticity 427
6.4 Bernoulli’s Equation for Irrotational Flow
4286.4.1 Bernoulli’s Equation for Steady Flow 430
6.4.2 Bernoulli’s Equation Along a Single Streamline 430
6.4.3 Pressure Variation Along a Streamline 431
6.4.4 The Coanda Effect 432
6.4.5 Draining of a Soda Straw 433
6.5 Standard Patterns of Flow
4356.5.1 Uniform Flow Along the x Axis 435
6.5.2 Uniform Flow in Arbitrary Direction 435
6.5.3 Flow From a Line Source 436
6.5.4 Sink With Spherical Symmetry – Collapse of a Bubble 438
6.5.5 The Free Vortex 440
6.5.6 Source in a Uniform Stream 441
6.5.7 Sink and Source of Equal Strength 444
6.5.8 The Doublet 446
6.5.9 Rankine Oval 447
6.5.10 Flow Past a Circular Cylinder 448
6.5.11 The Flow Net 449
6.5.12 Drag on Cylinder 450
6.5.13 Unsteady Flow and Virtual Mass 452
6.5.14 Potential Flow Past a Sphere 454
6.6 Conformal Mapping
4586.6.1 Complex Variables 458
6.6.2 Cauchy-Riemann Equations 459
6.6.3 Complex Potential 460
6.6.4 Conformal Transformations 461
6.6.5 Power-Law Mapping 463
6.6.5.1 Uniform Stream; n = 1 463
6.6.5.2 Flow Near a Corner; n = π/α 463
6.6.5.3 Doublet; n=−1 465
6.6.6 Logarithmic Mapping 466
6.6.6.1 Line Source 466
6.6.6.2 Free Vortex 466
6.6.6.3 Line Source Near a Corner 466
6.6.7 Force and Moment on a Cylinder 467
6.6.7.1 Blasius Theorem 467
6.6.7.2 Cauchy’s Integral Theorem 469
6.6.7.3 Cauchy’s Integral Formula 469
6.7 Polygonal Boundaries
4736.7.1 Change of Direction Under Conformal Mapping 473
6.7.2 Mapping of Polygons 475
6.7.3 The Schwarz-Christofell Transformation 476
6.7.3.1 Map of Semi-Infinite Channel 477
6.7.3.2 Map of Infinite Channel 478
6.7.4 Free Streamlines 479
6.7.4.1 Sequential Transforms 480
6.7.4.2 Flow Exiting Through a Sharp Orifice 481
6.7.4.3 Contraction Coefficient 485
Problems
486References
4887. Vorticity Dynamics
7.1 Introduction
4927.1.1 Vortex Lines 492
7.1.2 Visualization of Vorticity 493
7.2 Vorticity in Shear Flow
4957.2.1 Horse-Shoe Vortex 496
7.2.2 Vorticity in Natural Coordinates 496
7.2.3 Circulation 498
7.2.4 Divergence of the Vorticity Field 498
7.3 Vortex Sheets
5007.3.1 Stream Induced by Vorticity 501
7.4 Concentrated Vortices
5037.4.1 The Forced Vortex 503
7.4.2 The Free (Irrotational) Vortex 505
7.4.3 The Rankine Vortex 507
7.5 Cellular Flows
5107.6 The Vorticity Transport Equation
5137.6.1 Diffusion of Vorticity 517
7.6.2 Vortex Shedding 518
7.6.3 Vortex Lines “Frozen in the Fluid” 519
7.7 Vorticity Theorems
5227.7.1 Stokes’ Theorem 522
7.7.2 Vortex Strength Theorem 523
7.7.3 Vortex End Theorem 524
7.7.4 Helicity 525
7.7.5 Enstrophy 529
7.7.6 Kelvin’s Circulation Theorem 531
7.7.7 Conservation of Helicity 533
Problems 535
References
5368. Turbulent Flow
8.1 Introduction
5408.2 Turbulent Flow
5428.2.1 Transition to Turbulence 542
8.2.2 Instability of Laminar Flow 543
8.2.3 Orr-Sommerfeld Equation for Stability 543
8.2.4 Inviscid Instability 546
8.2.5 Viscous Instability 547
8.2.6 Squire’s Theorem 548
8.2.7 Stability of Flow in Open-Channel Flow 550
8.3 Averaging of Turbulent Flow Fields
5528.3.1 Velocity Fluctuations 553
8.3.2 Correlation of Velocity Fluctuations 554
8.3.3 Homogeneous Turbulence 555
8.3.4 Taylor Microscale 557
8.3.5 Isotropic Turbulence 557
8.4 Scales of Turbulent Motion
5598.4.1 Kolmogorov Microscale 560
8.4.2 Inertial Subrange 561
8.4.3 Energy Spectrum 562
8.4.4 Dissipation Spectrum 564
8.4.5 Universal Equilibrium 565
8.5 Time-Averaged Equations
5688.6 Transport of Reynolds Stresses
5718.7 Turbulence Closure Models
5748.7.1 Eddy Viscosity 574
8.7.2 Mixing-Length Theory 575
8.7.3 von Kármán’s Similarity Hypothesis 578
8.7.4 The Viscous Sublayer 579
8.8 Eddy Viscosity Profile
5838.9 Unified Model for Channel Flow
5858.9.1 The Buffer Region 587
8.9.2 The van Driest Model 588
8.9.3 Empirical Velocity Distributions 590
8.10 Kinetic Energy-Dissipation
(kt −ε) Model 5938.10.1 Transport of TKE 593
8.10.1.1 Homogeneous Turbulence 595
8.10.2 Scaling Considerations 596
8.10.3 Transport Equation for the Dissipation Rate 597
8.10.4 Direct Numerical Simulation 600
8.11 Large-Eddy Simulation
6028.11.1 Spatial Filtering 603
8.11.1.1 Filter Properties 604
8.11.1.2 Basic Filters 605
8.11.2 Discrete Filtering 606
8.11.3 Filtered Navier-Stokes Equations 608
8.11.4 Smagorinsky Subfilter Model 610
8.11.4.1 Effect of Boundaries 611
8.11.5 Dynamic Smagorinsky Model 612
8.11.6 Turbulence Model Selection 615
Problems
617References
619Note
6229. Boundary-Layer Flow
9.1 Introduction
6269.2 Boundary-Layer Theory
6279.2.1 Laminar Boundary Layer Past a Flat Plate 629
9.2.1.1 Scaling the Boundary Layer Equations 631
9.2.1.2 Similarity Solution 632
9.2.1.3 Velocity Distribution 635
9.2.2 Impact of Boundary Layer on Free Stream 637
9.2.3 Wall Suction 639
9.2.4 Skin Friction 640
9.2.5 Integral Relations 642
9.2.5.1 Zero Pressure Gradient 643
9.2.6 Wake Downstream of a Flat Plate 645
9.2.7 Boundary-Layer Separation 646
9.2.8 Wake Downstream of a Bluff Body 649
9.3 Turbulent Boundary-Layer Flow
6539.3.1 Turbulent Boundary-Layer Equations 655
9.3.2 Integral Relations 656
9.3.3 Direct Numerical Simulation 658
9.4 Free Shear Flows
6609.4.1 Free Shear Layers 660
9.4.1.1 Asymptotic Solution 662
9.4.2 Axisymmetric Turbulent Jets 664
9.4.2.1 Similarity Solution 666
9.4.2.2 Axial Velocity Profile 667
9.4.2.3 Radial Velocity 668
9.4.3 Turbulent Axisymmetric Wake 669
Problems
673References
67510. Geophysical Effects
10.1 Introduction
68010.2 Effects of the Earth’s Rotation
68210.2.1 Acceleration in a Rotating Coordinate System 682
10.2.2 Centrifugal (Fictitious) Acceleration 685
10.2.3 Local Coordinates on a Spherical Earth 686
10.2.4 Effective Gravity 687
10.2.4.1 Effect of Altitude 689
10.2.5 Coriolis Acceleration 690
10.2.6 Fictitious Force on a Rotating Frame 691
10.3 The Geopotential Field
69310.3.1 Geopotential Height 694
10.4 Hydrostatic Equilibrium
69710.4.1 Pressure Variation in the Atmosphere 698
10.4.2 Potential Temperature and Density 701
10.4.3 Virtual Potential Temperature 702
10.4.4 Pressure Variation in the Ocean 703
10.4.5 The Density Scale Height 704
10.4.6 Condition of Incompressibility 707
10.5 The Boussinesq Approximation
70910.5.1 Almost Incompressible Fluids 712
10.5.2 Thermal Energy Approximation 713
10.6 Scales of Geophysical Flows
71610.6.1 Horizontal Momentum 717
10.6.2 Vertical Momentum 719
10.7 Simple Geophysical Flows
72110.7.1 Inertial Oscillations 721
10.7.2 Geostrophic Balance 722
10.7.3 Barotropic Flow 724
10.7.4 Density Currents 727
10.7.5 The Taylor-Proudman Phenomenon 728
10.7.6 The Ekman Layer 729
10.7.6.1 Bottom Resistance 729
10.7.6.2 Uniform Core Flow 731
10.7.6.3 Ekman Transport and Pumping 733
10.7.7 Wind Stress and the Surface Ekman Layer 735
10.7.7.1 Surface Layer Transport 737
10.7.7.2 Surface Layer Pumping 737
10.7.7.3 Coastal Upwelling 739
Problems
741References
74311. Stratified Flow
11.1 Introduction
74611.1.1 The Richardson Number 748
11.2 Discrete Layer Approximation
75011.2.1 Viscous Flow in an Open Channel 750
11.2.2 Dense Bottom Currents 752
11.2.3 Wind-Driven Circulation 754
11.3 Interfacial Stability
76111.3.1 Normal Mode Analysis 762
11.3.2 Effects of Surface Tension 764
11.3.3 Rayleigh-Taylor Instability 766
11.3.4 Kelvin-Helmholtz instability 766
11.4 Continuously Stratified Flow
76911.4.1 Internal Waves 771
11.4.2 Periodic Internal Waves 772
11.4.3 Internal Wave Orientation 774
11.4.4 Uniform Stratification 776
11.4.5 Internal Seiches 778
11.5 Density Currents
78011.5.1 Arrested Density Current 781
11.5.2 Density Currents in Stratified Flow 785
11.6 Turbulence and Stratification
78911.6.1 Taylor-Goldstein Equation 789
11.7 Reynolds-Averaged Boussinesq Equations for Stratified Flow
79311.7.1 Kinetic Energy of the Mean Flow 793
11.7.2 Turbulent Kinetic Energy 794
11.7.3 Available Potential Energy 795
Problems
798References
80012. Turbulent Mixing and Dispersion
12.1 Introduction
80412.1.1 Turbulent Mixing 804
12.1.2 Dispersion 805
12.1.3 Time Scale of Turbulent Diffusion 806
12.2 Time-Averaged Equations for Mass Transport
81012.2.1 Length Scales of Turbulent Transport 813
12.3 Particle Correlations in Turbulent Flow
81512.3.1 Lagrangian Correlations 815
12.3.2 Lagrangian Autocorrelation Coefficient 817
12.3.3 Lagrangian Integral Time Scale 819
12.3.4 Eddy Diffusion Coefficient 820
12.3.5 Turbulent Diffusion in Three Dimensions 821
12.4 Relative Diffusion of Fluid Particles
82312.4.1 Small Times 825
12.4.2 Intermediate Times 828
12.4.3 Large Times 829
12.5 Shear Dispersion
83112.5.1 Dispersion in Parallel Shear Flow 831
12.5.2 Evolution of the Spatial Variance 832
12.5.2.1 Average Concentration 834
12.5.2.2 Center of Mass 836
12.5.2.3 Spatial Variance 837
12.5.2.4 Infinitely Deep Channel 837
12.6 Dispersion in Shallow Water 839
12.6.1 Vertical Mixing in Open Channels 839
12.6.2 Depth-Averaged Laminar Flow 842
12.6.3 Dispersion in Laminar Channel Flow 844
12.6.4 Advection-Dispersion Equation 848
12.6.5 Dispersion in Turbulent Channel Flow 849
12.6.6 Time Scales for Dispersion 852
12.6.7 Dispersion in Two-Dimensional Flow 853
12.6.8 Dispersion in Section-Averaged Flow 855
12.6.9 The Transverse Mixing Coefficient 856
12.6.10 Section-Averaged Dispersion Coefficient 858
12.6.11 Dispersion in a Tidal Estuary 860
Problems
863References
86513. Optimal Design and Flow Control
13.1 Introduction
87013.1.1 Constrained Optimization 871
13.1.2 Optimization Methods 872
13.2 Gradient-Based Methods
87413.2.1 Steepest Descent 875
13.2.1.1 The Rosenbrock Function 877
13.2.2 Newton’s Method 878
13.2.3 Quasi-Newton Methods 880
13.2.4 Secant Method (BFGS) 880
13.2.5 Hessian Update 881
13.3 Conjugate Gradient Method
88413.3.1 Line Search 884
13.3.2 Conjugate Gradient 884
13.4 Adjoint Problem Formulation
88713.4.1 Optimal Source Placement 888
13.4.2 Adjoint Equation 890
13.4.3 Dual Functional 891
13.4.4 Time Dependent Source 891
13.4.5 Variational Approach 895
13.4.5.1 Main Problem 895
13.4.5.2 Adjoint Problem 896
13.4.6 Sensitivity 897
13.5 Generalized Adjoint Problem
89913.5.1 Construction of Adjoint Problem 901
13.5.2 Optimal Release Sequence in Shallow Water 902
13.5.3 Uncertainty Analysis 906
13.6 Estimation of Dispersion Coefficients
90813.7 Source Inversion
91013.7.1 Importance of the Péclet Number 913
13.7.2 Time Dependent Sources 915
13.8 Active Control of Solute Slugs and Plumes 917
13.8.1 Adjoint Problem Formulation 918
13.8.2 Control of Two-Dimensional Slug 920
13.8.3 Control of Three-Dimensional Slug 921
Problems
925References
927Epilogue 929
Note
930Bibliography 931
Index 935
NK