Foundations of Deductive Databases and Logic Programming focuses on the foundational issues concerning deductive databases and logic programming. The selection first elaborates on negation in logic programming and towards a theory of declarative knowledge. Discussions focus on model theory of stratified programs, fixed point theory of nonmonotonic operators, stratified programs, semantics for negation in terms of special classes of models, relation between closed world assumption and the completed database, negation as a failure, and closed world assumption. The book then takes a look at negation as failure using tight derivations for general logic programs, declarative semantics of logic programs with negation, and declarative semantics of deductive databases and logic programs. The publication tackles converting AND-control to OR-control by program transformation, optimizing dialog, equivalences of logic programs, unification, and logic programming and parallel complexity. Topics include parallelism and structured and unstructured data, parallel algorithms and complexity, solving equations, most general unifiers, systems of equations and inequations, equivalences of logic programs, and optimizing recursive programs. The selection is a valuable source of data for researchers interested in pursuing further studies on the foundations of deductive databases and logic programming.