Book sale: Save up to 25% on print and eBooks. No promo code needed.
Book sale: Save up to 25% on print and eBooks.
Fish Physiology: Hypoxia
1st Edition - March 1, 2009
Editors: Jeffrey G. Richards, Anthony P. Farrell, Colin J. Brauner
Hardback ISBN:9780123746320
9 7 8 - 0 - 1 2 - 3 7 4 6 3 2 - 0
eBook ISBN:9780080877990
9 7 8 - 0 - 0 8 - 0 8 7 7 9 9 - 0
Periods of environmental hypoxia (Low Oxygen Availability) are extremely common in aquatic systems due to both natural causes such as diurnal oscillations in algal respiration,… Read more
Purchase Options
LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code is needed.
Periods of environmental hypoxia (Low Oxygen Availability) are extremely common in aquatic systems due to both natural causes such as diurnal oscillations in algal respiration, seasonal flooding, stratification, under ice cover in lakes, and isolation of densely vegetated water bodies, as well as more recent anthropogenic causes (e.g. eutrophication). In view of this, it is perhaps not surprising that among all vertebrates, fish boast the largest number of hypoxia tolerant species; hypoxia has clearly played an important role in shaping the evolution of many unique adaptive strategies. These unique adaptive strategies either allow fish to maintain function at low oxygen levels, thus extending hypoxia tolerance limits, or permit them to defend against the metabolic consequences of oxygen levels that fall below a threshold where metabolic functions cannot be maintained.
The aim of this volume is two-fold. First, this book will review and synthesize the adaptive behavioural, morphological, physiological, biochemical, and molecular strategies used by fish to survive hypoxia exposure and place them within an environmental and ecological context. Second, through the development of a synthesis chapter this book will serve as the cornerstone for directing future research into the effects of hypoxia exposures on fish physiology and biochemistry.
The only single volume available to provide an in-depth discussion of the adaptations and responses of fish to environmental hypoxia
Reviews and synthesizes the adaptive behavioural, morphological, physiological, biochemical, and molecular strategies used by fish to survive hypoxia exposure
Includes discussion of the evolutionary and ecological consequences of hypoxia exposure in fish
Research and Post-graduate scientists studying the physiology of fishes and the impact of extreme and environmentally degraded environments on fish physiology and survival. Comparative Vertebrate Physiologists studying adaptations to oxygen stress. Biomedical and sports physiologists interested in animal models of stress under low oxygen conditions
Chapter 1 - THE HYPOXIC ENVIRONMENT Robert J. Diaz and Denise L. Breitburg
Chapter 2 - BEHAVIOURAL RESPONSES AND ECOLOGICAL CONSEQUENCES Lauren J. Chapman and David J. McKenzie
Chapter 3 - EFFECTS OF HYPOXIA ON FISH REPRODUCTION AND DEVELOPMENT Rudolf Wu
Chapter 4 - OXYGEN AND CAPACITY LIMITED THERMAL TOLERANCE Hans O. Pörtner and Gisela Lannig
Chapter 5 - OXYGEN SENSING AND THE HYPOXIC VENTILATORY RESPONSE Steve F. Perry, Mike G. Jonz and Kathleen M. Gilmour
Chapter 6 - BLOOD-GAS TRANSPORT AND HAEMOGLOBIN FUNCTION: ADAPTATIONS FOR FUNCTIONAL AND ENVIRONMENTAL HYPOXIA Rufus M.G. Wells
Chapter 7 - CARDIOVASCULAR FUNCTION AND CARDIAC METABOLISM DURING ENVIRONMENTAL HYPOXIA Kurt Gamperl and William R. Driedzic
Chapter 8 - IMPACTS OF HYPOXIA ON GROWTH AND DIGESTION Tobais Wang, Sjannie Lefevre, Do Thi Thanh houng, Nguyen Van Cong, Mark Bayley
Chapter 9 - THE ANOXIA-TOLERANT CRUCIAN CARP (CARASSIUS CARASSIUS L.) Matti Vornanen, Jonathan A. W. Stecyk and Göran E. Nilsson
Chapter 10 - METABOLIC AND MOLECULAR RESPONSES OF FISH TO HYPOXIA Jeffrey G. Richards
Chapter 11 - VOLUME SYNTHESIS Tony Farrell and Jeffrey G. Richards
No. of pages: 517
Language: English
Published: March 1, 2009
Imprint: Academic Press
Hardback ISBN: 9780123746320
eBook ISBN: 9780080877990
JR
Jeffrey G. Richards
Affiliations and expertise
Department of Zoology, The University of British Columbia, Vancouver, Canada
AF
Anthony P. Farrell
Dr. Tony Farrell is a Professor Emeritus in the Department of Zoology & Faculty of Land and Food Systems at the University of British Columbia and a Fellow of the Royal Society of Canada. His research had provided an understanding of fish cardiorespiratory systems and has applied this knowledge to salmon migratory passage, fish stress handling and their recovery, sustainable aquaculture and aquatic toxicology. He has over 490 research publications in peer-reviewed scientific journals and an h-factor of 92. He has co-edited of 30 volumes of the Fish Physiology series, as well as an award-winning Encyclopedia of Fish Physiology. As part of his application of physiology to aquaculture, he has studied the sub-lethal impacts of sea lice and piscine orthoreovirus on the physiology of juvenile salmon. Dr. Farrell has received multiple awards, including the Fry Medal, which is the highest honour to a scientist from the Canadian Society of Zoologists, the Beverton Medal, which is the highest honour to a scientist from the Fisheries Society of the British Isles, the Award of Excellence, which is the highest honour of the American Fisheries Society and the Murray A. Newman Awards both for Research and for Conservation from the Vancouver Marine Sciences Centre. He is a former President of the Society of Experimental Biologists and a former Editor-in-Chief for the Journal of Fish Biology. He served as a member of the Minister’s Aquaculture Advisory Committee on Finfish Aquaculture for British Columbia and was a member of the Federal Independent Expert Panel on Aquaculture Science.
Affiliations and expertise
University of British Columbia, Vancouver, Canada
CB
Colin J. Brauner
Dr. Colin Brauner was educated in Canada at the University of British Columbia (Ph D), followed by a Post-doctoral fellowship at Aarhus University and the University of Southern Denmark, and was a Research Associate at McMaster University. He is a Professor of Zoology, UBC and Director of the UBC Aquatics Facility. He has been a Co-Editor of the Fish Physiology series since 2006. His research investigates environmental adaptations (both mechanistic and evolutionary) in relation to gas-exchange, acid-base balance and ion regulation in fish, integrating responses from the molecular, cellular and organismal level. The ultimate goal is to understand how evolutionary pressures have shaped physiological systems among vertebrates and to determine the degree to which physiological systems can adapt/acclimate to natural and anthropogenic environmental changes. This information is crucial for basic biology and understanding the diversity of biological systems, but much of his research conducted to date can also be applied to issues of aquaculture, toxicology and water quality criteria development, as well as fisheries management. His achievements have been recognized by the Society for Experimental Biology, UK (President’s medal) and the Canadian Conference for Fisheries Research (J.C. Stevenson Memorial Lecturer) and the Vancouver Marine Sciences Centre (Murray A. Newman Award for Aquatic Research). He is a former President of the Canadian Society of Zoologists.