Electronics – From Theory Into Practice
Applied Electricity and Electronics Division
- 2nd Edition - January 1, 1976
- Authors: J. E. Fisher, H. B. Gatland
- Editor: P. Hammond
- Language: English
- Hardback ISBN:9 7 8 - 0 - 0 8 - 0 1 9 8 5 7 - 6
- Paperback ISBN:9 7 8 - 1 - 4 8 3 1 - 2 7 7 5 - 0
- eBook ISBN:9 7 8 - 1 - 4 8 3 1 - 6 0 1 7 - 7
Electronics – From Theory Into Practice deals with design procedures in electronics and bridges the gap between theoretical knowledge and practice. It provides design examples and… Read more

Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteElectronics – From Theory Into Practice deals with design procedures in electronics and bridges the gap between theoretical knowledge and practice. It provides design examples and discusses the use of the Laplace Transform for solving engineering problems. The book introduces bipolar and field effect transistor, the unijunction transistor and the silicon-controlled rectifier, and shows how data sheets are used in design calculations. It then examines the development of integrated circuits and their characteristics. Following this discussion are chapters that contain a brief treatment of theory limited to the extraction of necessary design relationships. The book concludes by considering the general aspects of electronic engineering practice. This book will be of use to practising engineers, particularly those trained in other disciplines, who are taking on a certain amount of electronic design.
Preface
Design Examples
1. The Semiconductor
Introduction
1.1. The Junction Diode
1.2. Leakage Current
1.3. Diode Transient Response
1.4. Diode Logic
1.5. Functional Survey of Diode Types
1.6. RF and Microwave Diodes
1.7. The Junction Transistor
1.8. Fundamental Current Relationships
1.9. Elementary Considerations of Frequency Effects
1.10. Voltage Breakdown
1.11. Power Dissipation
1.12. Summary of Transistor Types
1.13. Static Characteristics of the Junction Transistor
1.14. Small Signal Representation
1.15. Transistor Biasing
1.16. Transistor Amplifier Characteristics
1.17. Examples
1.18. Summary of the Characteristics of Transistor Amplifiers in Terms of h Parameters
2. SCR-UJT-FET
Introduction
2.1. The Silicon-controlled Rectifier
2.2. Switching Off
2.3. Switching Characteristics
2.4. Applications
2.5. Load Effects
2.6. Thyristor Ratings
2.7. Gate Characteristic
2.8. The Unijunction Transistor
2.9. The UJT for Thyristor Triggering
2.10. A Bipolar Transistor Analogy
2.11. Field Effect Transistors
2.12. FET Amplifier Characteristics
3. Integrated Circuits
Introduction
3.1. Manufacturing Processes
3.2. Bipolar Integrated Circuits
3.3. Digital Logic Families
3.4. Noise Immunity
3.5. Summary of Bipolar Digital Circuits
3.6. Linear Circuits
3.7. MOS Integrated Circuits
3.8. Complementary MOS
3.9. Charge-Coupled Devices
4. Amplifiers
Introduction
4.1. Power Amplifiers
4.2. Audio Power Amplifier, Class A
4.3. The Class B Push-pull Amplifier
4.4. The Capacitively Coupled Amplifier
4.5. High-frequency Performance
4.6. High-frequency Response
4.7. Asymptotic Approximation
4.8. Low-frequency Performance of Capacitively Coupled Stages
4.9. Tandem Stages
4.10. Amplifier Time Response
4.11. Zero Frequency Amplifiers
4.12. The Direct-coupled Amplifier
4.13. Drift in Transistor d.c. Amplifiers
4.14. Integrated Circuit Amplifiers
4.15. Operational Amplifier Characteristics
4.16. Types and Applications
5. Tuned Amplifiers
Introduction
5.1. The Parallel-Tuned Circuit
5.2. Single-tuned Circuit Amplifier
5.3. Tunable RF Amplifier with Constant Selectivity
5.4. Cascaded Single-tuned Amplifier
5.5. Staggered-Tuned Amplifiers
5.6. Double-Tuned Circuits
5.7. Tuned Amplifiers using Bipolar Transistors
5.8. Neutralization
5.9. Integrated Circuits
6. Negative Feedback Amplifiers
6.1. Introduction
6.2. Feedback Connections
6.3. Examples of Series-Parallel Feedback Systems
6.3.1. Emitter Follower Buffer Amplifier
6.3.2. Output Stage for a Direct-Coupled Amplifier
6.3.3. Augmented Emitter Follower
6.3.4. Field Effect Source Follower
6.3.5. Operational Amplifier Voltage Follower
6.3.6. Applications of the Voltage Follower
6.3.7. The Voltage Follower Using Operational Amplifiers
6.3.8. Capacitor-Coupled Voltage Amplifier
6.3.9. Selective Amplifier Using Series-Parallel Feedback
6.4. Applications of Parallel-Series Feedback
6.4.1. Common Base Amplifier
6.4.2. Transistor Current Amplifier
6.4.3. Operational Amplifier Current Amplifiers
6.5. Examples of Parallel-Parallel Feedback
6.5.1. Performance of Parallel-Parallel Voltage Amplifier
6.5.2. Functional Operations—Integration
6.5.3. Difference Integrator
6.5.4. Double Integrator
6.5.5. Differentiation
6.6. Example of Series-Series Feedback
6.7. Instrumentation Using Feedback Amplifiers
6.7.1. Millivoltmeter
6.7.2. Transducer Amplifier
6.7.3. Difference Amplifier
6.7.4. Bridge Amplifier
6.7.5. High-Input Impedance Difference Amplifiers
6.8. Low-input Resistance Amplifier
6.9. Automatic Zeroing
6.10. Stabilization Against Oscillation
6.11. Active Resistor-Capacitor Filters
6.11.1. First-Order Filters
6.11.2. Basic Second-Order Filters
6.11.3. Resistance-Capacitance form of Second-Order System
6.11.4. Active Second-Order Filter
6.11.5. Higher-Order Filters
h6.11.6. Multiple Feedback Band-Pass Filter
Power Supplies
Introduction
7.1 The Basic Rectifier
7.2 The Full-wave Rectifier
7.3 Effect of Load Capacitance
7.4 L-C Smoothing Filter
7.5 Choke Input Filter
7.6 Voltage Multipliers
7.7 Voltage Stabilization
7.8 Semiconductor Stabilizer Diodes
7.9 Emitter Follower as a Voltage Stabilizer
7.10 Closed-loop System
7.11 Current Limitation
7.12 Application of Operational Amplifiers as Voltage Regulators
7.13 Fully Integrated Regulators
8. Oscillators
Introduction
8.1. Sinusoidal Oscillators—Basic Considerations
8.2. Negative Resistance
8.3. Amplitude Stabilization
8.4. Survey of Feedback L-C Oscillators
8.5. The Tuned Drain Oscillator
8.6. Colpitts Oscillator using a Bipolar Transistor
8.7. Resistance-Capacitance Oscillators
8.8. Wien Bridge Oscillator
8.9. Closed-loop Level Control
8.10. Frequency Stability
8.11. The Series Resonant Oscillator
9. Waveform Generators
Introduction
9.1. Multivibrators—General Survey of the Three Types
9.2. Transistor Switching
9.3. Speed of Transistor Switching
9.4. Bistable Multivibrator
9.5. Triggering
9.6. Alternative Gating Methods
9.7. Emitter-coupled BMV
9.8. Symmetrical Trigger BMV
9.9. Complementary Bistable Networks
9.10. Integrated Circuit Bistables
9.11. Monostable Multivibrators
9.12. The Direct Coupled MMV
9.13. Asymmetrical MMV
9.14. Integrated Circuit MMV
9.15. Astable Multivibrators
9.16. Emitter-coupled AMV
9.17. Complementary AMV
9.18. Integrated Circuit AMV
9.19. Voltage-controlled AMV
9.20. Pulse Generators
9.21. Linear Sweep Generators
9.22. Use of a Constant-current Generator
9.23. Sawtooth Generator using Avalanche Switching
9.24. Miller Timebase Generator
9.25. Reduction of Recovery Time
9.26. Integrated Circuit Waveform Generator/VCO
10. Digital Techniques
Introduction
10.1. Interface Elements
10.2. Basic Combinational Logic Elements
10.3. Basic Identities for Logic Variables
10.4. Example—Data Handling
10.5. Exclusive OR
10.6. NAND Bistable
10.7. Examples
10.8. Clocked Bistable
10.9. Delta Modulator
10.10. Master-Slave JK Bistable
10.11. Flip-Flop Binary Counters
10.12. Decoding
10.13. Decade Counter
10.14.Counter Applications
11. Some General Design Considerations
11.1. Resistors
11.2. Resistor Types
11.3. Capacitors
11.4. Capacitor Types
11.5. Practical Use of TTL Devices
11.6 .Screening
Appendix A. Solutions of Simple Network Problems
Appendix B. Application of the Laplace Transform
Appendix C. Symbols Used in this Book
Appendix D. The Thermionic Valve
Bibliography
Index
- No. of pages: 506
- Language: English
- Edition: 2
- Published: January 1, 1976
- Imprint: Pergamon
- Hardback ISBN: 9780080198576
- Paperback ISBN: 9781483127750
- eBook ISBN: 9781483160177
PH
P. Hammond
Affiliations and expertise
University of SouthamptonRead Electronics – From Theory Into Practice on ScienceDirect