Skip to main content

Holiday book sale: Save up to 30% on print and eBooks. No promo code needed.

Save up to 30% on print and eBooks.

Divisor Theory in Module Categories

1st Edition - January 1, 1974

Author: W. V. Vasconcelos

Editor: Leopoldo Nachbin

eBook ISBN:
9 7 8 - 1 - 4 8 3 2 - 5 7 2 0 - 4

North-Holland Mathematics Studies, 14: Divisor Theory in Module Categories focuses on the principles, operations, and approaches involved in divisor theory in module categories,… Read more

Image - Divisor Theory in Module Categories

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

North-Holland Mathematics Studies, 14: Divisor Theory in Module Categories focuses on the principles, operations, and approaches involved in divisor theory in module categories, including rings, divisors, modules, and complexes. The book first takes a look at local algebra and homology of local rings. Discussions focus on Gorenstein rings, Euler characteristics of modules, Macaulay rings, Koszul complexes, Noetherian and coherent rings, flatness, and Fitting's invariants. The text then explains divisorial ideals, including divisors, modules of dimension one, and higher divisorial ideals. The manuscript ponders on spherical modules and divisors and I-divisors. Topics include construction, Euler characteristics of Inj (A), change of rings and dimensions, spherical modules, resolutions and divisors, and elementary properties. The text is a valuable source of information for mathematicians and researchers interested in divisor theory in module categories.