This is the first study to present simultaneously both deconvolution and inversion, two powerful tools of data analysis. Featured within this volume are various geophysical convolution models and a treatment of deconvolution for a time-varying signal. The single channel time-varying deconvolution is shown equivalent to the multichannel time-invariant deconvolution, thus a formalism and associated algorithms can handle both. Inverse theory as well as various inversion schemes are presented on the basis of a relationship between a small perturbation to the model and its effects on the observation. The information theory inversion scheme is discussed, and several types of norm of minimization presented. Additionally, concepts and results of inverse theory are applied to design a new deconvolution operator for estimating magnetization and density distribution, and the constraint of the Backus-Gilbert formalism of inverse theory is used to design a new prediction error filter for maximum entropy spectral estimates. Maximum likelihood, another high resolution method is also presented. This volume can be utilised as a graduate-level text for courses in Geophysics. Some chapters will be of use for graduate courses in Applied Mathematics, Applied Statistics, and Oceanography.