
Data Driven Analysis and Modeling of Turbulent Flows
- 1st Edition - March 17, 2025
- Imprint: Academic Press
- Editor: Karthik Duraisamy
- Language: English
- Paperback ISBN:9 7 8 - 0 - 3 2 3 - 9 5 0 4 3 - 5
- eBook ISBN:9 7 8 - 0 - 3 2 3 - 9 5 0 4 4 - 2
Data-driven Analysis and Modeling of Turbulent Flows provides an integrated treatment of modern data-driven methods to describe, control, and predict turbulent flows through the… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteData-driven Analysis and Modeling of Turbulent Flows provides an integrated treatment of modern data-driven methods to describe, control, and predict turbulent flows through the lens of both physics and data science.
The book is organized into three parts:
• Exploration of techniques for discovering coherent structures within turbulent flows, introducing advanced decomposition methods
• Methods for estimation and control using data assimilation and machine learning approaches
• Finally, novel modeling techniques that combine physical insights with machine learning
This book is intended for students, researchers, and practitioners in fluid mechanics, though readers from related fields such as applied mathematics, computational science, and machine learning will find it also of interest.
The book is organized into three parts:
• Exploration of techniques for discovering coherent structures within turbulent flows, introducing advanced decomposition methods
• Methods for estimation and control using data assimilation and machine learning approaches
• Finally, novel modeling techniques that combine physical insights with machine learning
This book is intended for students, researchers, and practitioners in fluid mechanics, though readers from related fields such as applied mathematics, computational science, and machine learning will find it also of interest.
• Exploration of techniques for discovering coherent structures within turbulent flows, introducing advanced decomposition methods
• Methods for estimation and control using data assimilation and machine learning approaches
• Finally, novel modeling techniques that combine physical insights with machine learning
• Methods for estimation and control using data assimilation and machine learning approaches
• Finally, novel modeling techniques that combine physical insights with machine learning
This book is intended for students, researchers, and practitioners in fluid mechanics, though readers from related fields such as applied mathematics, computational science, and machine learning will find it also of interest.
1. Introduction to data-driven modeling
2. Modal Decomposition
3. Resolvent analysis for turbulent flows
4. Data assimilation and flow estimation
5. Data-driven control
6. Constitutive Modeling
7. Parameter estimation and uncertainty quantification
8. Machine Learning Augmented modeling
9. Symbolic regression methods
2. Modal Decomposition
3. Resolvent analysis for turbulent flows
4. Data assimilation and flow estimation
5. Data-driven control
6. Constitutive Modeling
7. Parameter estimation and uncertainty quantification
8. Machine Learning Augmented modeling
9. Symbolic regression methods
- Edition: 1
- Published: March 17, 2025
- Imprint: Academic Press
- Language: English
- Paperback ISBN: 9780323950435
- eBook ISBN: 9780323950442
KD
Karthik Duraisamy
Karthik Duraisamy is a professor of Aerospace Engineering and the director of the Michigan Institute for Computational Discovery at the University of Michigan, Ann Arbor, USA. His research interests are in data-driven and reduced order modeling, statistical inference, numerical methods, and Generative AI with application to fluid flows. He is also the founder and Chief Scientist of the Silicon Valley startup Geminus.AI which is focused on physics informed AI for industrial decision-making.
Affiliations and expertise
Director, Center for Data-driven Computational Physics and the Air Force Center for Rocket Combustor Dynamics, University of Michigan, USARead Data Driven Analysis and Modeling of Turbulent Flows on ScienceDirect