
Crystal Growth
International Series on the Science of the Solid State
- 2nd Edition - January 1, 1980
- Imprint: Pergamon
- Editor: Brian R. Pamplin
- Language: English
- Paperback ISBN:9 7 8 - 1 - 4 8 3 1 - 2 9 0 4 - 4
- Hardback ISBN:9 7 8 - 0 - 0 8 - 0 2 5 0 4 3 - 4
- eBook ISBN:9 7 8 - 1 - 4 8 3 1 - 6 1 4 6 - 4
Crystal Growth, Second Edition deals with crystal growth methods and the relationships between them. The chemical physics of crystal growth is discussed, along with solid growth… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteCrystal Growth, Second Edition deals with crystal growth methods and the relationships between them. The chemical physics of crystal growth is discussed, along with solid growth techniques such as annealing, sintering, and hot pressing; melt growth techniques such as normal freezing, cooled seed method, crystal pulling, and zone melting; solution growth methods; and vapor phase growth. This book is comprised of 15 chapters and opens with a bibliography of books and source material, highlighted by a classification of crystal growth techniques. The following chapters focus on the molecular state of a crystal when in equilibrium with respect to growth or dissolution; the fundamentals of classical and modern hydrodynamics as applied to crystal growth processes; creation, control, and measurement of the environment in which a crystal with desired properties can grow; and growth processes where transport occurs through the vapor phase. The reader is also introduced to crystal growth with molecular beam epitaxy; crystal pulling as a crystal growth method; and zone refining and its applications. This monograph will be of interest to physicists and crystallographers.
1. Introduction to Crystal Growth Methods
1.1. Main Categories of Crystal Growth Methods
1.2. The Chemical Physics of Crystal Growth
1.3. Solid Growth Techniques
1.3.1. Introduction
1.3.2. Annealing Techniques
1.3.3. Sintering and Hot Pressing
1.4. Melt Growth Techniques
1.4.1. Introduction
1.4.2. Normal Freezing, Directional Freezing, or Bridgman-Stockbarger Method
1.4.3. Cooled Seed Method
1.4.4. Crystal Pulling
1.4.5. Zone Melting
1.4.6. Flame Fusion Techniques
1.4.7. Arc Fusion Techniques
1.5. Solution Growth Methods
1.6. Vapor Phase Growth
1.7. Choosing a Crystal Growth Method
1.8. The Literature of Crystal Growth
2. Nucleation and Growth Theory
2.1. Introduction
2.2. Crystal Models
2.2.1. Atomic Bonding
2.2.2. Formation Energy of Clusters on a Crystal Plane
2.2.3. Surface Diffusion
2.3. Supersaturation, Supercooling, and Volume Energy
2.3.1. Growth from the Vapor
2.3.2. Growth from the Melt
2.3.3. Growth from Solution
2.4. Basic Nucleation Theory
2.5. Three-dimensional Nucleation
2.5.1. Nucleus Formation Energy
2.5.2. The Formation Energy of Liquid Nuclei
2.5.3. The Formation Energy of Crystalline Nuclei
2.5.4. Nucleation Rates
2.6. The Growth of Crystal Surfaces
2.6.1. Introduction
2.6.2. The Equilibrium Structure of Surfaces and Steps
2.6.3. The Equilibrium Structure and Formation Energy of Two-dimensional Nuclei
2.6.4. Two-dimensional Nucleation and Growth
2.6.5. Screw Dislocation Growth
2.6.6. Application to Vapor, Melt, and Solution Growth
2.7. Simulated Crystal Growth
2.7.1. The Scope and Objectives of Simulation Studies
2.7.2. Equilibrium Surface Structure
2.7.3. Nucleation and Growth
2.8. Material and Heat Flow in Crystal Growth
2.8.1. Growth from Solution
2.8.2. Growth from the Melt
2.8.3. Growth from the Vapor
2.9. The Kinetic Generation of Crystal Forms
2.9.1. Whiskers
2.9.2. Needles and Platelets
2.9.3. Flat Faces
2.9.4. Equilibrium and Characteristic Habits
2.9.5. Dendrites
3. Hydrodynamics of Crystal Growth Processes
3.1. Introduction
3.2. Fundamentals
3.2.1. Flowfields
3.2.2. The Flownet
3.2.3. Navier-Stokes Equations
3.2.4. The Vorticity Transport Equation
3.2.5. Transport Coefficients
3.3. Flow over Crystals in Solution
3.3.1. Stokes Flow
3.3.2. Flow around Asymmetric Crystals in Solutions
3.3.3. Flow Separation
3.4. Boundary Layer Phenomena
3.4.1. Boundary Layers
3.4.2. Boundary Layer Flow over a Flat Surface
3.5. Flow in Rotating Fluids
3.5.1. Flow to a Rotating Disk Substrate
3.5.2. Flow to a Rotating Fluid
3.5.3. Flow between Two Rotating Plane Surfaces
3.5.4. Accelerated Crucible Crystal Growth
3.5.5. Detached Shear Layers
3.5.6. Flow in Czochralski Crystal Growth
3.6. Flow in Gas Phase Epitaxial Reactors
3.6.1. Flow in a Straight Channel
3.6.2. Flow in Vertical Cylinder Reactors
3.6.3. Stagnation Flow Reactors
3.7. Thermally Driven Flow
3.7.1. Convective Flow on Vertical Surfaces
3.7.2. Convective Flow in Fluids Heated from below
3.7.3. Horizontal Normal Freezing
3.7.4. Convective Instabilities in Vapor Phase Crystal Growth
3.8. Flow-Assisted Mass Transfer
3.8.1. Mass Transfer Equations
3.8.2. Growth Rate of Crystals in Stokes Flow
3.8.3. Growth Rate on a Rotating Surface
3.8.4. Mass Transfer through Boundary Layers
3.8.5. Growth Rates in Epitaxial Reactors
3.9. Conclusions
4. Environment For Crystal Growth
4.1. Introduction
4.1.1. General Remarks on Instrumentation
4.1.2. Definitions in Measurement
4.2. Temperature
4.2.1. Methods of Heating
4.2.2. Temperature Measurement
4.2.3. Temperature Control
4.3. Atmosphere
4.3.1. Vacuum Techniques
4.3.2. High Pressure Techniques
4.3.3. Dynamic Atmospheres
4.4. Container Materials
4.4.1. General Considerations
4.4.2. Maintenance of Containers
4.5. Growth Velocity
4.5.1. Macroscopic Growth Velocity
4.5.2. Microgrowth Fluctuations
4.6. Conclusion
5. Vapor Phase Growth
5.1. Introduction
5.2. Thermodynamics
5.2.1. SiCl4 Growth of Si
5.2.2. Composition of III V Alloys
5.3. Mass Transport
5.3.1. Closed Tube Systems
5.3.2. Horizontal Reactor
5.3.3. Vertical Reactor
5.4. Interface Kinetics
5.4.1. Si Growth from SiH4
5.4.2. GaAs Growth Kinetics
5.5. Defect Generation
5.5.1. Sources of Defects
5.5.2. Si/Si:B
5.5.3. III-V Alloy Systems
5.5.4. Si on Sapphire
5.6. Conclusions
6. MBE—Molecular Beam Epitaxial Evaporative Growth
6.1. Introduction
6.1.1. Evaporative Methods Other than MBE
6.2. Apparatus and Instrumentation
6.2.1. General
6.2.2. Vacuum Systems
6.2.3. Evaporation Sources
6.2.4. Substrate Holders and Heaters and Sample Manipulators
6.2.5. Instrumentation
6.3. MBE—Crystal Growth
6.3.1. Phase Equilibria and Stoichiometry—GaAs
6.3.2. Stoichiometry
6.3.3. Deposition
6.4. Substrate Preparation
6.5. Surface Structures
6.6. Adsorption and Desorption
6.6.1. Interaction of As, Ga and Al on GaAs
6.6.2. Doping and Stoichiometry in MBE
6.6.3. Oxidation
6.7. Specific Materials and Specialized Structures
6.7.1. Silicon
6.7.2. GaAs-GaAlAs and Other III-V's
6.7.3. IV-VI's: PbSnTe
6.7.4. ZnSe and Other II-VI's
7. Crystal Pulling
7.1. Introduction
7.2. Material Considerations
7.2.1. Liquid Material Limitations
7.2.2. Crucible Selection
7.2.3. Heat Sources
7.2.4. Furnace Construction
7.3. Crystal Growth
7.3.1. Growth Rate
7.3.2. Thermal Gradients
7.3.3. Thermal Effects
7.3.4. Growth Striations
7.4. Solid Solutions and Impurities
7.5. Growth Control
7.5.1. Temperature Control
7.5.2. Diameter Control
7.6. Special Techniques
7.6.1. Silicon Growth
7.6.2. Liquid Encapsulation Czochralski (LEC)
7.6.3. Flux Pulling
7.6.4. Shaped Growth
8. Zone Refining and Its Applications
8.1. Introduction
8.1.1. Brief Description
8.1.2. Brief History
8.2. Theoretical Aspects of Zone Melting
8.2.1. The Distribution Coefficients
8.2.2. Solute Distribution in Normal Freezing Processes
8.2.3. Solute Distribution in Zone Melting
8.3. Factors Affecting the Practice of Zone Melting
8.3.1. The Zone Length
8.3.2. Zone Traverse Velocity
8.3.3. Temperature Gradient at the Solid-Liquid Interface
8.3.4. The Degree of Mixing in the Liquid
8.3.5. Matter Transport in Zone Melting
8.4. Design and Choice of Zoning Equipment
8.4.1. Zoning in a Container
8.4.2. Zone Refining Without Containers
8.4.3. Traverse Mechanisms
8.4.4. Design Considerations For "Ideal Zones"
8.4.5. Stirring
8.5. Modifications of Zone Refining
8.5.1. Liquid Encapsulation
8.5.2. Microscale Zone Melting
8.5.3. Direct Current Effects and Zone Melting
8.6. Allied Techniques
8.6.1. Thin Alloy Zone Techniques
8.7. Conclusions
9. Methods of Growing Crystals under Pressure
9.1. Introduction: Explanation of the Decomposition Tendency of Compounds Having Mixed Bonding
9.2. Resistance Heater Methods
9.2.1. Bridgman Growth Under High Inert Gas Pressure
9.2.2. The Capillary-Tipped Ampoule Method for ZnTe
9.2.3. The "Soft Ampoule" Method
9.2.4. Preparing II-VI Compounds from the Pure Elements
9.3. Induction Heater Methods
9.3.1. Vertical and Horizontal Bridgman Method in Unsupported Quartz Ampoules
9.3.2. Vertical Bridgman Growth in Pressure-Relieved Ampoules
9.3.3. Czochralski-Type Pulling under Pressure
9.4. Crystal Growth Using Liquid Encapsulation (LE)
9.4.1. Czochralski Pulling
9.4.2. Liquid Encapsulation Bridgman Growth
9.4.3. Liquid Encapsulation Zone Leveling
9.5. Outlook: New Methods
9.5.1. Issuing Phosphorus Vapor into the Melt
9.5.2. Continuous Liquid-Phase Epitaxy Growth
9.6. Summary and Conclusions
10. Crystallization from Solution at Low Temperatures
10.1. Introduction
10.2. Basic Requirements
10.2.1. Choice of Solvent
10.3. Crystallization Apparatus
10.3.1. A General Purpose Laboratory Crystallizer
10.4. Saturation and Seeding
10.4.1. Saturation
10.4.2. Seed Selection and Mounting
10.5. Factors That Influence the Perfection of the Final Crystal
10.6. Control of Crystal Morphology
11. Liquid Phase Epitaxy
11.1. Introduction
11.2. Apparatus
11.3. Phase Diagrams
11.4. Growth Kinetics
11.4.1. Modes of LPE Growth
11.4.2. Diffusion Equations Used to Describe LPE Growth
11.4.3. Semi-Infinite Solutions without Interfacial Kinetics
11.4.4. Semi-Infinite Solutions with Interfacial Kinetics
11.5. Surface Morphology and Lattice Mismatch
11.5.1. Surface Morphologies
11.5.2. Supercooling and Substrate Misorientation Effects
11.5.3. Stresses and Surface Changes as a Result of Mismatch
11.5.4. Changes in Growth Rate and Segregation Coefficients Resulting from Mismatch
11.6. Outlook For LPE
11.7. Appendixes
11.8. Symbols
12. High-Temperature Solution Growth
12.1. Introduction
12.2. Choice of a Solvent
12.3. Experimental Techniques
12.3.1. General Requirements
12.3.2. Growth Stability
12.3.3. Slow Cooling
12.3.4. Evaporation
12.3.5. Gradient Transport
12.3.6. Thin Solvent Zone Methods
12.3.7. Electrocrystallization
12.3.8. Stirring
12.3.9. Liquid Phase Epitaxy
12.4. Studies of the Growth Mechanism
12.5. Summary
13 Dendritic Growth
13.1. Introduction
13.2. Consequences of Dendritic Growth
13.2.1. Morphology
13.2.2. Crystal Defects
13.2.3. Solute Segregation
13.2.4. Void Formation
13.2.5. Crystal Multiplication
13.2.6. Importance and Origin of Dendritic Growth
13.3. Instabilities That Cause Dendritic Growth
13.4. Steady-State Dendritic Growth Velocity
13.4.1. Elementary Treatment
13.4.2. Improvements to This Elementary Treatment
13.5. Experimental Observations of Dendritic Growth Velocities
13.6. Other Studies of Dendritic Growth
13.6.1. Dendrite Arm Spacing
13.6.2. Influence of Fluid Flow on Dendritic Growth Phenomenon
13.7. Appendix
14 Bulk Crystallization
14.1. Supersaturation
14.1.1. Supersaturation and Metastability
14.1.2. Measurement of Supersaturation
14.2. Nucleation
14.3. Crystal Growth
14.3.1. Overall Growth Rates
14.3.2. Face Growth Rates
14.3.3. Size-Dependent Growth
14.3.4. Expression of Crystal Growth Rates
14.3.5. Mass Transfer Correlations
14.3.6. "Films" and "Boundary Layers"
14.4. Habit Modification
14.4.1. Industrial Importance
14.5. Crystallization Methods and Equipment
14.5.1. Cooling Crystallizers
14.5.2. Controlled Crystallization
14.5.3. Direct Contact Cooling
14.5.4. Classifying Crystallizers
14.5.5. Evaporating and Vacuum Crystallizers
14.5.6. Forced Circulation Evaporators
14.5.7. Vacuum Operation
14.5.8. Salting-out Crystallization
14.5.9. Reaction Crystallization
14.5.10. Spray Crystallization
14.5.11. Melt Crystallization
14.6. Design and Operation of Crystallizers
14.6.1. Crystallizer Selection
14.6.2. Information For Design
14.6.3. Crystal Yield
14.6.4. Scale-up and Operating Problems
14.6.5. Modes of Operation
14.6.6. Concept of the Population Balance
14.6.7. Crystal Size Distributions
14.6.8. Applications of the Population Balance
15. Assessment of Crystalline Perfection
15.1. Introduction
15.2. Volume, Area, Line, and Point Defects
15.3. Threshold Concentrations of Defects in Crystals
15.4. Methods for Detecting Structural Imperfections
15.4.1. Optical Methods
15.4.2. Transmission Electron Microscopy
15.4.3. X-Ray Topography
15.4.4. Scanning Electron Microscopy
Subject Index
Organic Compounds Index
Inorganic Compounds Index
Table of Fundamental Physico-Chemical Constants
Table of Useful Conversions of Units
Table of Energy Conversion Factors
Periodic Table
- Edition: 2
- Published: January 1, 1980
- Imprint: Pergamon
- No. of pages: 628
- Language: English
- Paperback ISBN: 9781483129044
- Hardback ISBN: 9780080250434
- eBook ISBN: 9781483161464
Read Crystal Growth on ScienceDirect