
Comprehensive Organic Synthesis
- 2nd Edition - February 14, 2014
- Imprint: Elsevier
- Editors: Paul Knochel, Gary A Molander
- Language: English
- Hardback ISBN:9 7 8 - 0 - 0 8 - 0 9 7 7 4 2 - 3
- eBook ISBN:9 7 8 - 0 - 0 8 - 0 9 7 7 4 3 - 0
The second edition of Comprehensive Organic Synthesis—winner of the 2015 PROSE Award for Multivolume Reference/Science from the Association of American Publishers—builds upon the… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteThe second edition of Comprehensive Organic Synthesis—winner of the 2015 PROSE Award for Multivolume Reference/Science from the Association of American Publishers—builds upon the highly respected first edition in drawing together the new common themes that underlie the many disparate areas of organic chemistry. These themes support effective and efficient synthetic strategies, thus providing a comprehensive overview of this important discipline.
Fully revised and updated, this new set forms an essential reference work for all those seeking information on the solution of synthetic problems, whether they are experienced practitioners or chemists whose major interests lie outside organic synthesis. In addition, synthetic chemists requiring the essential facts in new areas, as well as students completely new to the field, will find Comprehensive Organic Synthesis, Second Edition, Nine Volume Set an invaluable source, providing an authoritative overview of core concepts.
- Winner of the 2015 PROSE Award for Multivolume Reference/Science from the Association of American Publishers
- Contains more than170 articles across nine volumes, including detailed analysis of core topics such as bonds, oxidation, and reduction
- Includes more than10,000 schemes and images
- Fully revised and updated; important growth areas—including combinatorial chemistry, new technological, industrial, and green chemistry developments—are covered extensively
University and research libraries, especially with collections in organic or heterocyclic chemistry; corporations engaged in industrial chemistry or organic synthesis and government agencies regulating these areas.
- Editors-in-Chief
- Volume Editors
- Preface
- Permission Acknowledgments
- Volume 1: Additions to C–X Π-Bonds, Part 1
- Introduction to Volume 1: Additions to CX π-Bonds, Part 1
- 1.01 Carbanions of Alkali and Alkaline-Earth Cations: (II) Selectivity of Carbonyl Addition Reactions
- Abstract
- Glossary
- 1.01.1 Introduction
- 1.01.2 Additions of Achiral Reagents to Chiral Substrates
- 1.01.3 Additions of Chiral Reagents to Achiral Substrates
- References
- 1.02 Organosilicon Reagents: Vinyl-, Alkynyl-, and Arylsilanes
- Abstract
- Glossary
- 1.02.1 Introduction
- 1.02.2 Characteristics of Organosilicon Compounds
- 1.02.3 Vinylsilanes
- 1.02.4 Alkynylsilanes
- 1.02.5 Arylsilanes
- References
- 1.03 Organoaluminum Reagents
- Abstract
- Glossary
- 1.03.1 Introduction from the View Point on the Preparation of Organoaluminum Reagents
- 1.03.2 Uncatalyzed 1,2-Addition of Organoaluminum Reagents
- 1.03.3 Enantioselective 1,2-Addition of Organoaluminum Reagents to Carbonyl Compounds Catalyzed by Chiral Metal Complex
- 1.03.4 Rational Design of Organoaluminum Lewis Acid for Selective 1,2-Addition
- References
- 1.04 Regio-, Diastereo-, and Enantioselective Addition of Organocopper Reagents onto CO and CN Bonds
- Abstract
- Glossary
- 1.04.1 Introduction
- 1.04.2 1,2-Additions to Aldehydes and Ketones
- 1.04.3 1,2 Addition to Imines and Derivatives
- 1.04.4 Catalytic and Asymmetric Copper-Mediated Reactions
- 1.04.5 Miscellaneous
- 1.04.6 Conclusion
- References
- 1.05 Organotitanium and Organozirconium Reagents
- Abstract
- Glossary
- 1.05.1 Introduction
- 1.05.2 Preparation of Principal Organotitanium and Organozirconium Reagents
- 1.05.3 Carbonyl Addition Reactions
- References
- 1.06 Organochromium Reagents
- Abstract
- 1.06.1 Introduction
- 1.06.2 C–C Single Bond Formation
- 1.06.3 C–C Double Bond Formation
- 1.06.4 Miscellaneous Carbon–Carbon Bond Formation
- 1.06.5 Conclusion
- References
- 1.07 Recent Advances in Organozinc Reagents
- Abstract
- Glossary
- 1.07.1 Introduction
- 1.07.2 Addition of Organozinc Reagents
- 1.07.3 Addition of Reformatsky Reagents
- 1.07.4 Applications of Dialkylzincs as Radical Reagents
- References
- 1.08 Organocerium Reagents
- Glossary
- 1.08.1 Introduction
- 1.08.2 Organocerium Reagents
- 1.08.3 Cerium Enolates
- 1.08.4 Application in Organic Synthesis
- References
- 1.09 Samarium and Ytterbium Reagents
- Abstract
- Glossary
- 1.09.1 Introduction and Scope
- 1.09.2 Zero Valent Yb and Sm
- 1.09.3 Divalent Sm and Yb
- 1.09.4 Trivalent Sm and Yb
- References
- 1.10 Lewis Acid Promoted Addition Reactions of Organometallic Compounds
- Abstract
- 1.10.1 Introduction
- 1.10.2 LAs Addition to Aldehydes and Ketones
- 1.10.3 LAs in Additions to Acid Derivatives
- 1.10.4 LAs in Additions to Imines and Related Derivatives
- References
- 1.11 Nucleophilic Addition of Nonstabilized Carbanions to Imines and Imine Derivatives
- Abstract
- Glossary
- 1.11.1 Introduction
- 1.11.2 1,2-Additions of Unstabilized Carbanions to Imines and Imine Derivatives
- 1.11.3 Summary and Outlook
- References
- 1.12 Sulfur and Selenium Stabilization
- Abstract
- Glossary
- 1.12.1 Introduction
- 1.12.2 Sulfenyl-Stabilized Carbanions
- 1.12.3 Sulfinyl-Stabilized Carbanions
- 1.12.4 Sulfonyl-Stabilized Carbanions
- 1.12.5 Sulfonimidoyl-Stabilized Carbanions
- 1.12.6 Selenium-Stabilized Carbanions
- References
- 1.13 Benzoin and Aza-benzoin
- Abstract
- Glossary
- 1.13.1 Introduction
- 1.13.2 Benzoin and Aza-Benzoin Condensations with Stoichiometric Acyl Anion Equivalents
- 1.13.3 Cyanide Ion-Catalyzed Benzoin Condensations
- 1.13.4 NHC-Catalyzed Benzoin Condensations
- 1.13.5 Other Catalytic Benzoin Condensations
- 1.13.6 Vinylogous Reactivity: The Homoaldol Reaction
- 1.13.7 Acknowledgments
- References
- 1.14 Oxygen-Stabilized Carbanions
- Abstract
- Glossary
- 1.14.1 Introduction
- 1.14.2 sp3-Hybridized α-Oxygenorganolithiums
- 1.14.3 sp2-Hybridized Organolithiums
- 1.14.4 Conclusion
- References
- 1.15 Olefination of Carbonyl Compounds by Main-Group Element Mediators
- Abstract
- Glossary
- 1.15.1 Introduction
- 1.15.2 Sulfur-Mediated Olefination Methods
- 1.15.3 Phosphorus-Mediated Olefination Methods
- 1.15.4 Silicon- and Boron-Mediated Olefination Methods
- References
- 1.16 Epoxidation and Related Processes
- Abstract
- Glossary
- 1.16.1 Introduction
- 1.16.2 General Considerations
- 1.16.3 Addition to CO π-Bonds
- 1.16.4 Addition to CN π-Bonds
- Acknowledgment
- References
- 1.17 Addition of Heteroatom Nucleophiles to CO and CN pi Bonds
- Abstract
- Glossary
- 1.17.1 Introduction
- 1.17.2 Additions to CN pi Bonds
- 1.17.3 Additions to CO pi Bonds
- References
- 1.18 CN Addition to CO and CN Bonds
- Abstract
- Glossary
- 1.18.1 Important Safety Notice – Hazardous Materials
- 1.18.2 Introduction
- 1.18.3 Addition of Cyanide to Aldehydes and Ketones
- 1.18.4 Addition of Cyanide to Imines and Related Compounds
- References
- 1.19 Carbonyl and Imine Activation
- Abstract
- Glossary
- 1.19.1 Introduction
- 1.19.2 Differences between Hydrogen-Bonding Catalysts and Brønsted Acid Catalysts
- 1.19.3 Activation of Carbonyl Compounds and Imine Derivatives
- References
- Volume 2: Additions to C–X Π-Bonds, Part 2
- Introduction to Volume 2: Additions to CX π-Bonds, Part 2
- 2.01 Allylborons
- Abstract
- Glossary
- 2.01.1 Introduction
- 2.01.2 Overview of Allylboranes
- 2.01.3 Preparation of Allylboranes
- 2.01.4 Structural Analogs of Allylboranes
- 2.01.5 Allylation of Aldehydes
- 2.01.6 Allylation of Ketones
- 2.01.7 Allylation of Carbonyls Produced In Situ
- 2.01.8 Allylation of Imines
- 2.01.9 Allylation of Other Carbonyl Derivatives
- 2.01.10 Allylation of Other π-Systems
- 2.01.11 Other Reactions of Allylboranes
- 2.01.12 Allylboranes in Total Synthesis
- References
- 2.02 Allylsilanes, Allylstannanes, and Related Compounds
- Abstract
- Glossary
- 2.02.1 Introduction
- 2.02.2 Overview of Allylsilanes, -Germanes, -Stannanes, and -Plumbums
- 2.02.3 Allylsilanes
- 2.02.4 Allylgermanes
- 2.02.5 Allylstannanes
- 2.02.6 Allylplumbums
- References
- 2.03 Prins Reactions and Carbonyl, Imine, and Thiocarbonyl Ene Reactions
- Abstract
- Glossary
- 2.03.1 Introduction
- 2.03.2 Intermolecular Ene Reactions
- 2.03.3 Intramolecular Ene Reactions
- 2.03.4 Oxonium Ene Reactions, Prins Cyclizations, and Prins-Pinacol Reactions
- 2.03.5 Imine Ene Reactions
- 2.03.6 Thiocarbonyl Ene and Prins Reactions
- References
- 2.04 Heteroatom-Stabilized Allylic Anions
- Abstract
- Glossary
- 2.04.1 Introduction
- 2.04.2 Silicon-Substituted Allylic Anions
- 2.04.3 Phosphorus-Substituted Allylic Anions
- 2.04.4 Sulfur-Substituted Allylic Anions
- 2.04.5 Nitrogen-Substituted Allylic Anions
- 2.04.6 Oxygen-Substituted Allylic Anions
- 2.04.7 Halogen-Substituted Allylic Anions
- References
- 2.05 Propargyl and Allenyl Organometallics
- Abstract
- Glossary
- 2.05.1 Introduction
- 2.05.2 Lithium and Magnesium
- 2.05.3 Boron
- 2.05.4 Zinc
- 2.05.5 Copper
- 2.05.6 Tin
- 2.05.7 Silicon
- 2.05.8 Chromium
- 2.05.9 Titanium and Zirconium
- 2.05.10 Other Metals
- References
- 2.06 Formation of Enolates
- Abstract
- 2.06.1 Introduction
- 2.06.2 Alkali Metal Enolates
- 2.06.3 Magnesium Enolates
- 2.06.4 Boron Enolates
- 2.06.5 Aluminum Enolates
- 2.06.6 Tin Enolates
- 2.06.7 Titanium Enolates
- 2.06.8 Zirconium Enolates
- 2.06.9 Copper Enolates and Enolates from Cuprates
- 2.06.10 Zinc Enolates
- 2.06.11 Other Transition Metal Enolates
- References
- 2.07 The Aldol Reaction: Organocatalysis Approach
- Abstract
- Glossary
- 2.07.1 Introduction
- 2.07.2 Enamine Catalysis
- 2.07.3 Brønsted Acid and Hydrogen-Bond Catalysis
- 2.07.4 Brønsted Base Catalysis Including Bifunctional Catalysis
- 2.07.5 Phase-Transfer Catalysis
- 2.07.6 Supported Organocatalysis
- 2.07.7 Conclusions
- References
- 2.08 The Aldol Reaction: Group I and Group II Enolates
- Abstract
- 2.08.1 Introduction
- 2.08.2 Formation and Aldol Reactions of Regio-Defined Enolates
- 2.08.3 Simple Diastereoselection
- 2.08.4 Diastereofacial Selectivity
- 2.08.5 Equilibration; Thermodynamic Control
- References
- 2.09 The Aldol Reaction: Group IV Enolates (Mukaiyama, Enol Ethers)
- Abstract
- Glossary
- 2.09.1 Introduction
- 2.09.2 General Background
- 2.09.3 Silicon Enolate
- 2.09.4 Tin Enolate
- 2.09.5 Germanium and Lead Enolates
- 2.09.6 Summary
- References
- 2.10 The Aldol Reaction: Transition Metal Enolate
- Abstract
- Glossary
- 2.10.1 Introduction
- 2.10.2 Transition-Metal-Catalyzed Direct Aldol Reaction
- 2.10.3 Transition-Metal-Catalyzed Aldol Reaction Employing Latent Enolates
- 2.10.4 Conclusions
- References
- 2.11 Aldolase-Catalyzed CC Bond Formation of Carbohydrate Synthesis
- Abstract
- Glossary
- 2.11.1 Introduction
- 2.11.2 Sialic Acid Aldolase-Catalyzed Synthesis
- 2.11.3 Deoxyribose 5-Phosphate Aldolase-Catalyzed Synthesis
- 2.11.4 Fructose-6-Phosphate Aldolase-Catalyzed Synthesis
- 2.11.5 Promiscuous Enzyme Function – Hydroxynitrile Lyase-Catalyzed Nitroaldol Reaction
- 2.11.6 Conclusion
- Acknowledgments
- References
- 2.12 Zinc Enolates: The Reformatsky and Blaise Reactions
- Abstract
- Glossary
- 2.12.1 Introduction
- 2.12.2 Reformatsky Reagent
- 2.12.3 Reaction with Aldehyde and Ketone Substrates
- 2.12.4 Reaction with Other Substrates
- 2.12.5 Blaise Reaction
- References
- 2.13 The Henry (Nitroaldol) Reaction
- Abstract
- Glossary
- 2.13.1 Introduction
- 2.13.2 Synthetic Application of Henry Reaction
- 2.13.3 Stereoselective Henry Reaction
- 2.13.4 Synthetic Application in Domino Reactions
- 2.13.5 Outlook
- References
- 2.14 Other Condensation Reactions (Knoevenagel, Perkin, Darzens)
- Abstract
- 2.14.1 Introduction
- 2.14.2 Knoevenagel Condensation
- 2.14.3 Perkin Condensation
- 2.14.4 Darzens Condensation
- References
- 2.15 Metal Homoenolates
- Abstract
- Glossary
- 2.15.1 Introduction
- 2.15.2 Preparation and Reactivity of Metal Homoenolates
- 2.15.3 Homoenolates Generated by N-Heterocyclic Carbene (NHC)
- 2.15.4 Transition Metal-Catalyzed Nucleophilic Allylation of Carbonyls
- 2.15.5 Homoallylation of Carbonyls with Butenyl Carbanion Equivalent
- 2.15.6 Conclusion
- References
- 2.16 The Bimolecular and Intramolecular Mannich and Related Reactions
- Abstract
- Glossary
- 2.16.1 Introduction
- 2.16.2 Metal-Catalyzed Mannich-Type Reactions
- 2.16.3 Organocatalyzed Mannich-Type Relations
- References
- 2.17 Addition to N-Acyliminium Ions of Heteroatoms such as Oxygen, Nitrogen, Sulfur, and Selenium as Internal Nucleophiles
- Abstract
- Glossary
- 2.17.1 Introduction
- 2.17.2 Formation of the CC Bond: General Aspects
- 2.17.3 Formation of the CX Bond (X=O, N, S, and Se)
- 2.17.4 N-Acyliminium Cation Oxacyclization
- 2.17.5 Azacyclization of N-Acyliminium Cations
- 2.17.6 Thia- and Selenacyclization of N-Acyliminium Ions
- 2.17.7 Common Approaches Using Oxa-, Aza-, and Thiacyclizations
- 2.17.8 Common Reactions to Oxa- and Azacyclizations
- 2.17.9 Concluding Remarks
- Acknowledgments
- References
- Volume 3: Carbon–Carbon Bond Formation
- Introduction to Volume 3: CarbonCarbon Bond Formation
- 3.01 Alkylations of Enols and Enolates
- Abstract
- Glossary
- 3.01.1 Introduction
- 3.01.2 Formation and Reactivity of Enolates
- 3.01.3 Diastereoselective Enolate Alkylations
- 3.01.4 Enantioselective Enolate Alkylation
- 3.01.5 Miscellaneous
- 3.01.6 Conclusion
- References
- 3.02 Organolithium Compounds Bearing a Phenyl-, a Vinyl-, and/or a Seleno Group on their Carbanionic Centers: Synthesis by Se/Li Exchange and Unusual Synthetic Applications
- Abstract
- 3.02.1 Generalities
- 3.02.2 Reactivity of Selenides and Functionalized Selenides toward Organolithiums
- 3.02.3 Reactivity of Selenides and Functionalized Selenides toward Elemental Lithium and Metal Arenides
- 3.02.4 Reactivity of Benzyllithiums: Exceptional Family of Organometallics
- 3.02.5 Conclusion
- References
- 3.03 Alkylation of α-Sulfur-Containing Carbanions
- Abstract
- 3.03.1 Introduction
- 3.03.2 Alkylation of α-Thiocarbanions
- 3.03.3 Alkylation of α-Sulfinyl Carbanions
- 3.03.4 Alkylation of α-Sulfonyl Carbanions
- 3.03.5 Alkylations of Sulfoximinoyl Carbanions
- 3.03.6 Alkylation of Sulfonates, Sulfonamides, and Sulfur Ylides
- 3.03.7 Alkylation of Carbanions Bearing Two Geminal Sulfur Atoms
- References
- 3.04 Alkylations of Nonstabilized Carbanions
- Abstract
- Glossary
- 3.04.1 Introduction
- 3.04.2 Generation and Nucleophilic Displacement of Alkyl and Alkenyl Polar Organometallics
- 3.04.3 Allylation of Nonstabilized (Hard) Nucleophiles
- 3.04.4 Carbometalations and Related Reactions
- 3.04.5 Transition Metal-Catalyzed Cross-Coupling Alkylations with Zn- and Mg–Alkyl Carbanions
- References
- 3.05 Polyene Cyclizations
- Abstract
- 3.05.1 Introduction
- 3.05.2 Brønsted Acid-Catalyzed Cyclizations
- 3.05.3 Epoxide-Based Openings
- 3.05.4 Other Functional Groups for Initiation
- 3.05.5 Metal-Mediated Polyene Cyclizations
- 3.05.6 Halonium-Initiated Cyclizations
- 3.05.7 Radical-Initiated Cyclizations
- References
- 3.06 Transannular Electrophilic Cyclizations
- Abstract
- Glossary
- 3.06.1 Introduction
- 3.06.2 Eight-Membered Rings
- 3.06.3 Nine-Membered Rings
- 3.06.4 Ten-Membered Rings
- 3.06.5 Eleven-Membered Rings
- 3.06.6 Other Rings
- 3.06.7 Formation of Carbon–Heteroatom Bonds
- References
- 3.07 Coupling Reactions Between sp3-Carbon Centers
- Abstract
- 3.07.1 Introduction
- 3.07.2 Homocoupling Reactions
- 3.07.3 Direct Cross-Coupling
- 3.07.4 Transition Metal-Catalyzed Cross-Coupling
- References
- 3.08 Coupling Reactions Between sp3 and sp2 Carbon Centers
- Abstract
- Glossary
- 3.08.1 Introduction
- 3.08.2 Copper-Catalyzed or -Mediated Coupling Reactions
- 3.08.3 Palladium-Catalyzed Coupling Reactions
- 3.08.4 Nickel-Catalyzed Coupling Reactions
- 3.08.5 Cobalt-Catalyzed Coupling Reactions
- 3.08.6 Iron-Catalyzed Coupling Reactions
- References
- 3.09 Coupling Reactions Between C(sp2) and C(sp) Carbon Centers
- Abstract
- Glossary
- 3.09.1 General Introduction
- 3.09.2 Transition Metal-Catalyzed Coupling of Terminal and Masked Alkynes with C(sp2)-Halides
- 3.09.3 Transition Metal-Catalyzed Coupling of C(sp)-Metal Reagents with C(sp2)-Halides and Pseudohalides
- 3.09.4 Transition Metal-Catalyzed Coupling of C(sp2)-Metal Reagents with C(sp)-Halides and Pseudohalides
- 3.09.5 Domino Reactions Involving C(sp2)–C(sp) Coupling as the Key Step
- References
- 3.10 Coupling Reactions Between sp Carbon Centers
- Abstract
- Glossary
- 3.10.1 Introduction
- 3.10.2 Oxidative Coupling Reactions of Terminal Alkynes
- 3.10.3 Coupling Reactions of Terminal Alkynes and 1-Haloalkynes
- 3.10.4 Oxidative Homocoupling of Organometallic Alkynides
- 3.10.5 Coupling of Organometallic Alkynides and 1-Haloalkynes
- 3.10.6 Decarboxylative Coupling of Propiolic Acids
- 3.10.7 Elimination Reactions of Haloolefins
- 3.10.8 Applications
- References
- 3.11 Pinacol Coupling Reactions
- Abstract
- Glossary
- 3.11.1 Introduction
- 3.11.2 Reagents for the Pinacol Coupling Reaction
- 3.11.3 Pinacol Coupling Reactions in Natural Product Synthesis
- References
- 3.12 Acyloin Coupling Reactions
- Abstract
- Glossary
- 3.12.1 Introduction
- 3.12.2 Traditional Acyloin Coupling Reactions
- 3.12.3 N-heterocyclic Carbene (NHC) Catalyzed Acyloin Coupling Reactions
- 3.12.4 Indirect Approaches to Unsymmetrical Acyloins
- 3.12.5 Summary
- References
- 3.13 Oxidative Coupling of Phenols and Phenol Ethers
- Abstract
- Glossary
- 3.13.1 Introduction
- 3.13.2 Synthesis of Oxygenated Biaryls
- 3.13.3 Synthesis of Diaryl Ethers
- 3.13.4 Synthesis of Spirodienones
- 3.13.5 Oxidative Phenolic Coupling Involving Conjugated Double Bonds
- 3.13.6 Oxidative Phenolic C–C Coupling Involving Quinonoids
- 3.13.7 Conclusion
- References
- 3.14 The Pinacol Rearrangement
- Abstract
- 3.14.1 Introduction
- 3.14.2 Historic Context
- 3.14.3 General Reactivity
- 3.14.4 Aza-Pinacol Rearrangements
- 3.14.5 Asymmetric Pinacol Rearrangements
- 3.14.6 Catalytic Enantioselective Pinacol Rearrangements
- 3.14.7 Natural Product Synthesis
- References
- 3.15 Acid-Catalyzed Rearrangement of Epoxides
- Abstract
- 3.15.1 Introduction
- 3.15.2 Brønsted Acid-Catalyzed Rearrangements
- 3.15.3 Lewis Acids Derived from Main Group Elements
- 3.15.4 Transition Metal-Based Lewis Acids
- 3.15.5 Other Metals
- 3.15.6 Solid Catalysts
- 3.15.7 Conclusion
- References
- 3.16 The Semipinacol Rearrangements
- Abstract
- Glossary
- 3.16.1 Introduction
- 3.16.2 Rearrangement of 2-Heterosubstituted Alcohols
- 3.16.3 Rearrangement of Allylic Alcohols
- 3.16.4 Rearrangement of Propargylic Alcohols
- 3.16.5 Rearrangement of Epoxides
- 3.16.6 Rearrangement of α-Hydroxy Ketones and α-Hydroxy Imines
- 3.16.7 Miscellaneous Type
- 3.16.8 Summary and Outlook
- References
- 3.17 The Favorskii Rearrangement (Extend to Rings)
- Abstract
- 3.17.1 Introduction
- 3.17.2 Mechanism of the Favorskii Rearrangement
- 3.17.3 The Favorskii Rearrangement in Acyclic Structures
- 3.17.4 The Favorskii Rearrangement in Alicyclic Structures
- 3.17.5 Homo- and Quasi-Favorskii Rearrangements
- 3.17.6 Favorskii-Like Reactions
- 3.17.7 Oxy-Favorskii Rearrangement
- 3.17.8 Favorskii Rearrangement in Biosynthetic Transformations
- References
- 3.18 The Ramberg–Bäcklund Rearrangement and the Eschenmoser Coupling Reaction
- Abstract
- Glossary
- 3.18.1 The Ramberg–Bäcklund Rearrangement
- 3.18.2 The Eschenmoser Coupling Reaction (Eschenmoser Sulfide Contraction)
- References
- 3.19 The Wolff Rearrangement
- Abstract
- Glossary
- 3.19.1 Introduction
- 3.19.2 Mechanistic Considerations
- 3.19.3 Applications
- 3.19.4 Final Remarks
- References
- 3.20 Nitrogen- and Sulfur-Based Stevens and Related Rearrangements
- Abstract
- Glossary
- 3.20.1 Introduction
- 3.20.2 Procedures for Ylide Generation
- 3.20.3 [1,2]-Stevens Rearrangements
- 3.20.4 [2,3]-Stevens Rearrangements
- 3.20.5 Competition between [1,2] and [2,3] Rearrangements
- 3.20.6 Enantioselective and Enantiospecific Rearrangements
- 3.20.7 Stevens Rearrangements of Aminals, Hemiaminals, and Oxathiolanes
- 3.20.8 Sommelet–Hauser Rearrangements
- 3.20.9 Lewis-Acid Promoted Stevens Rearrangements of Tertiary Amines
- 3.20.10 Conclusion
- References
- 3.21 The Wittig Rearrangement
- Abstract
- Glossary
- 3.21.1 Overview
- 3.21.2 1,2-Rearrangements
- 3.21.3 1,4-Rearrangements
- 3.21.4 2,3-Rearrangements
- References
- 3.22 Carbonylation and Decarbonylation Reactions
- Abstract
- Glossary
- 3.22.1 Introduction
- 3.22.2 Carbonylation of C–X Bonds
- 3.22.3 Carbonylation of C–C Unsaturated Bonds
- 3.22.4 Carbonylation of C–H Bonds
- 3.22.5 Carbonylative Cyclization
- 3.22.6 Carbonylative Ring-Expansion
- 3.22.7 Carbonylation Without CO Gas
- 3.22.8 Decarbonylation
- References
- 3.23 Carbon–Carbon σ-Bond Formation via CH Bond Functionalization
- Abstract
- 3.23.1 Introduction
- 3.23.2 Reactions with CC/CX Multiple Bonds
- 3.23.3 Reactions with (Pseudo)halides
- 3.23.4 Reactions with Organometallic Reagents
- 3.23.5 Reactions with CH Bonds
- 3.23.6 Miscellaneous CH Functionalization Reactions
- 3.23.7 Summary and Outlook
- References
- Volume 4: Additions to and Substitutions at C–C Π-Bonds
- Introduction to Volume 4: Additions to and Substitutions at C–C π-Bonds
- 4.01 Stabilized Nucleophiles with Electron Deficient Alkenes, Alkynes, Allenes
- Abstract
- 4.01.1 Introduction
- 4.01.2 Electron-Deficient Alkenic π-Systems
- 4.01.3 Electron-Deficient Alkynic π-Systems
- 4.01.4 Electron-Deficient Allenic π-Systems
- 4.01.5 Conclusion
- References
- 4.02 Nucleophilic Addition-Electrophilic Coupling with a Carbanion Intermediate
- Abstract
- Glossary
- 4.02.1 Introduction
- 4.02.2 α,β-Unsaturated Aldehydes
- 4.02.3 The α,β-Unsaturated Ketones
- 4.02.4 α,β-Unsaturated Esters and Amides
- 4.02.5 Nitroolefins
- 4.02.6 Alkynes
- 4.02.7 Outlook
- References
- 4.03 Organocatalytic Asymmetric Nucleophilic Addition to Electron-Deficient Alkenes
- Abstract
- Glossary
- 4.03.1 Introduction
- 4.03.2 The Michael Reaction
- 4.03.3 Conjugate Friedel-Crafts Alkylation
- 4.03.4 Stetter Reaction
- 4.03.5 Conjugate Addition of Alkenylboranes and Arylboranes
- 4.03.6 Conjugate Addition of Cyanides
- 4.03.7 Conjugate Hydrogen Transfer Reaction
- 4.03.8 Conjugate Addition of Heteronucleophiles
- 4.03.9 Conclusions and Outlook
- References
- 4.04 Metal-Catalyzed Asymmetric Nucleophilic Addition to Electron-Deficient Alkenes
- Abstract
- Glossary
- 4.04.1 Introduction
- 4.04.2 Copper-Catalyzed ECA
- 4.04.3 Rh/Ir/Ru Metal-Catalyzed ECA
- 4.04.4 Pd-Catalyzed Enantioselective Conjugate Addition
- 4.04.5 Ni-Catalyzed Enantioselective Conjugate Addition
- 4.04.6 Rare Earth Element-Catalyzed Enantioselective Conjugate Addition
- 4.04.7 Ti/Zr/Hf Metal-Catalyzed Enantioselective Conjugate Addition
- 4.04.8 Mg/Zn Metal-Catalyzed Enantioselective Conjugate Addition
- 4.04.9 Ca/Sr/Ba Metal-Catalyzed Enantioselective Conjugate Addition
- 4.04.10 Alkali Metal-Catalyzed Enantioselective Conjugate Addition
- 4.04.11 Al/Ga Metal-Catalyzed Enantioselective Conjugate Addition
- 4.04.12 Miscellaneous Metal-Catalyzed Enantioselective Conjugate Addition
- 4.04.13 Conclusion and Outlook
- References
- 4.05 Addition of HX Reagents to Alkenes, Alkynes, and Allenes without Transition Metal
- Abstract
- Glossary
- 4.05.1 Introduction
- 4.05.2 Hydrogen Halides Addition
- 4.05.3 H–N Addition
- 4.05.4 H–O Addition
- 4.05.5 H–SR Addition
- 4.05.6 H–P Addition
- 4.05.7 H–SeR Addition
- 4.05.8 Conclusions
- References
- 4.06 Addition of X–Y Reagents to Alkenes, Alkynes, and Allenes
- Abstract
- Glossary
- 4.06.1 Introduction
- 4.06.2 Ionic Addition Reactions
- 4.06.3 Radical Addition Reactions
- 4.06.4 Metal-Catalyzed Addition Reactions
- References
- 4.07 Electrophilic Cyclization
- Abstract
- Glossary
- 4.07.1 Introduction
- 4.07.2 Halocyclization
- 4.07.3 Sulfenylcyclization, Selenocyclization, and Tellurocyclization
- 4.07.4 Hg-, Ag-, Au-, and Pt-Catalyzed Electrophilic Cyclization
- 4.07.5 Conclusion
- References
- 4.08 Carbon–Carbon Bond-Forming Reactions Involving Aryl Radicals
- Abstract
- Glossary
- 4.08.1 Introduction
- 4.08.2 Aryl Radical Addition to Cyanide and Carbanions – Nucleophilic Aromatic Substitutions
- 4.08.3 Meerwein-Type Reactions: Aryl Radical Addition to Double and Triple Bonds
- 4.08.4 Substitution of Aromatics and Heteroaromatics through Aryl Radicals
- 4.08.5 Aryl Radicals in Carbon–Heteroatom Bond Formation
- 4.08.6 Summary
- References
- 4.09 Nucleophilic Coupling with Arynes
- Abstract
- Glossary
- 4.09.1 Introduction
- 4.09.2 Generation of Arynes
- 4.09.3 Addition of Nucleophiles to Arynes
- 4.09.4 Conclusive Remarks
- References
- 4.10 Reactions of Nucleophiles with Coordinated Alkynes, Alkenes, and Allenes
- Abstract
- 4.10.1 Introduction
- 4.10.2 Reactions of Alkynes
- 4.10.3 Reactions of Alkenes
- 4.10.4 Reactions of Allenes
- 4.10.5 Summary
- References
- 4.11 Nucleophiles with Allyl Metal Complexes
- Abstract
- Glossary
- 4.11.1 Introduction
- 4.11.2 Carbon Nucleophiles
- 4.11.3 Nitrogen Nucleophiles
- 4.11.4 Oxygen Nucleophiles
- 4.11.5 Sulfur Nucleophiles
- 4.11.6 Fluorine Nucleophile
- 4.11.7 Boron Nucleophiles
- 4.11.8 Other Nucleophiles
- 4.11.9 Conclusion
- Acknowledgment
- References
- 4.12 Radical Addition Reactions
- Abstract
- Glossary
- 4.12.1 Introduction
- 4.12.2 Free-Radical Addition to Carbon–Carbon Multiple Bonds
- 4.12.3 Free-Radical Addition to CarbonHeteroatom Multiple Bonds
- 4.12.4 Conclusions
- References
- 4.13 Radical Cyclizations and Sequential Radical Reactions
- Abstract
- Glossary
- 4.13.1 Introduction
- 4.13.2 Tin-Free Cyclizations of Carbon-Centered Radicals
- 4.13.3 Cyclizations Involving Heteroatom-Based Radicals or Radical Acceptors
- 4.13.4 Cyclizations That Form Unusual-Sized Rings
- 4.13.5 Enantioselective Cyclizations and Chirality Transfer
- 4.13.6 Sequential Radical Reactions
- 4.13.7 Notable Examples of Radical Cyclizations in Total Synthesis
- 4.13.8 Conclusions
- References
- 4.14 Vinyl Substitutions with Organopalladium Intermediates
- Abstract
- 4.14.1 Introduction
- 4.14.2 Catalyst Development
- 4.14.3 Regioselectivity
- 4.14.4 Cyclization
- 4.14.5 Chelation Control
- 4.14.6 Domino/Cascade/Tandem Processes Involving the Heck Reaction
- 4.14.7 Oxidative Heck-Type Reactions
- 4.14.8 Asymmetric Heck Reactions
- 4.14.9 Combinatorial and Solid-Phase Syntheses
- 4.14.10 New Reaction Media and Heating Techniques in the Heck Reaction
- 4.14.11 Natural Products and Active Pharmaceutical Ingredients
- References
- 4.15 Carbometalation and Heterometalation Reactions of Alkenes, Alkynes, and Allenes
- Abstract
- Glossary
- 4.15.1 Carbometalation of Alkenes, Alkynes, and Allenes
- 4.15.2 Heterometalation of Alkenes, Alkynes, and Allenes
- 4.15.3 Conclusion
- References
- 4.16 Bismetallation and Bismetallative Reaction of Alkenes, Alkynes, and Allenes
- Abstract
- 4.16.1 Introduction
- 4.16.2 Bismetallation of Alkenes
- 4.16.3 Bismetallation of Alkynes
- 4.16.4 Bismetallation of Allenes
- 4.16.5 Conclusion
- References
- 4.17 Hydroacylation of Alkenes, Alkynes, and Allenes
- Abstract
- Glossary
- 4.17.1 Introduction
- 4.17.2 Transition Metal-Catalyzed Hydroacylation
- 4.17.3 Radical Methods
- 4.17.4 Organocatalytic Methods
- 4.17.5 Conclusions
- References
- 4.18 Hydroformylation and Related Carbonylation Reactions of Alkenes, Alkynes, and Allenes
- Abstract
- Glossary
- 4.18.1 Introduction
- 4.18.2 Regioselectivity
- 4.18.3 Isomerizing Hydroformylation
- 4.18.4 Diastereoselective Hydroformylation
- 4.18.5 Enantioselective Hydroformylation
- 4.18.6 Hydroformylation of Alkynes, Allenes, and Epoxides
- 4.18.7 Related Carbonylation Reaction of Alkenes, Alkynes, and Allenes
- References
- 4.19 Methylene and Nonfunctionalized Alkylidene Transfer to Form Cyclopropanes
- Abstract
- Glossary
- 4.19.1 Introduction
- 4.19.2 Cyclopropanation by Ring Contraction of Pyrazolines
- 4.19.3 Cyclopropanation with Lithium-derived Carbenes Prepared by α-Elimination
- 4.19.4 Cyclopropanation with M
- Edition: 2
- Published: February 14, 2014
- No. of pages (Hardback): 9806
- No. of pages (eBook): 9806
- Imprint: Elsevier
- Language: English
- Hardback ISBN: 9780080977423
- eBook ISBN: 9780080977430
PK
Paul Knochel
GM