Comprehensive Biomedical Physics
- 1st Edition - July 25, 2014
- Editor: Anders Brahme
- Language: English
- Hardback ISBN:9 7 8 - 0 - 4 4 4 - 5 3 6 3 2 - 7
- eBook ISBN:9 7 8 - 0 - 4 4 4 - 5 3 6 3 3 - 4
Comprehensive Biomedical Physics, Ten Volume Set is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedica… Read more

Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteComprehensive Biomedical Physics, Ten Volume Set is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics.
This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics.
- The most comprehensive work on biomedical physics ever published
- Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine
- Contains 1800 illustrations, all in full color
- Editor-in-Chief
- Editorial Board
- Preface
- Permission Acknowledgments
- Volume 1: Nuclear Medicine and Molecular Imaging
- Introduction to Volume 1: Nuclear Medicine and Molecular Imaging
- 1.01. History of Nuclear Medicine and Molecular Imaging
- Abstract
- Acknowledgments
- 1.01.1 Introduction
- 1.01.2 Discoveries of the Early 1900s That Underpin Nuclear Medicine
- 1.01.3 Earliest Radiation Detection Systems
- 1.01.4 Contemporary Photon Detectors
- 1.01.5 Scintillation Detector Materials
- 1.01.6 Two-Dimensional Gamma Scanners and Cameras
- 1.01.7 Three-Dimensional Imaging
- 1.01.8 Image Processing and Data Analysis
- 1.01.9 Radionuclide Production
- 1.01.10 Radiotracer Syntheses Instrumentation
- 1.01.11 Hazards and Absorbed Radiation Doses
- 1.01.12 Selected Applications
- 1.01.13 Molecular Imaging, Born in Mid-1990s
- 1.01.14 Short History of Organizational Nuclear Medicine and Molecular Imaging
- 1.01.15 Future Expectations
- Appendix A Major Steps in the Chronology of Nuclear Medicine and Nuclear Molecular Imaging
- Appendix B
- References
- Further Reading
- Glossary
- 1.02. Single-Photon Radionuclide Imaging and SPECT
- Abstract
- Abbreviations
- 1.02.1 Introduction
- 1.02.2 Instrumentation
- 1.02.3 Acquisition Modes and Image Formation
- 1.02.4 Imaging Procedures
- References
- 1.03. Dynamic Single-Photon Emission Computed Tomography
- Abstract
- Acknowledgments
- Preface
- Appendix
- References
- Glossary
- 1.04. Scatter Correction in SPECT
- Abstract
- Acknowledgments
- 1.04.1 Introduction
- 1.04.2 Source of Scattered Photons
- 1.04.3 Impact of Scatter on Reconstructed Slices
- 1.04.4 Ways to Lessen the Amount of Scatter Acquired
- 1.04.5 Goal of and Dilemma for SC Strategies
- 1.04.6 Energy Spectrum-Based SC Strategies
- 1.04.7 Spatial Domain-Based SC
- References
- Glossary
- 1.05. Compton Emission Tomography
- Abstract
- Acknowledgment
- 1.05.1 Limitations of Mechanical Collimation in SPECT
- 1.05.2 Compton Cameras Use Electronic Collimation to Determine Cones of Origin
- 1.05.3 Back Projection of Compton Cones Is Useful for Locating Discrete Sources
- 1.05.4 Escaping Photons and the Compton Continuum
- 1.05.5 Analyzing a Recorded Event
- 1.05.6 Compton Image Reconstruction
- 1.05.7 Uncertainties in Compton Camera Measurements
- 1.05.8 Compton Camera Instrumentation
- 1.05.9 Future Perspectives
- References
- 1.06. Positron Emission Tomography
- Abstract
- 1.06.1 Introduction
- 1.06.2 Basics of Positron Decay
- 1.06.3 Making an Image – Overview
- 1.06.4 Primary Detection
- 1.06.5 Decoding
- 1.06.6 Real-Time Detector Corrections
- 1.06.7 Detector Corrections Applied During Image Reconstruction
- 1.06.8 Basic Image Reconstruction
- References
- Glossary
- 1.07. Time-of-Flight Positron Emission Tomography
- Abstract
- 1.07.1 Introduction
- 1.07.2 Basics of TOF PET
- 1.07.3 Brief History of TOF PET
- 1.07.4 Timing Basics
- 1.07.5 Optimizing Timing Resolution in PET
- 1.07.6 Conclusions
- References
- Glossary
- 1.08. Time-of-Flight PET Reconstruction Strategies
- Abstract
- 1.08.1 Introduction
- 1.08.2 Basics of TOF-PET Reconstruction
- 1.08.3 3D TOF-PET Reconstruction Algorithms
- 1.08.4 Data Corrections
- 1.08.5 Impact of TOF-PET Reconstruction
- References
- Glossary
- 1.09. Positron Emission Tomography (PET)/Computer Tomography (CT)
- Abstract
- Abbreviation
- 1.09.1 Introduction to Positron Emission Tomography/Computer Tomography Imaging
- 1.09.2 Design Features of PET/CT Systems
- 1.09.3 Attenuation Correction in PET/CT
- 1.09.4 PET/CT-Specific Artifacts and Corrections
- 1.09.5 Dosimetry
- 1.09.6 PET/CT in Clinical Applications
- 1.09.7 Conclusion
- References
- Glossary
- 1.10. High-Resolution Small Animal Imaging
- Abstract
- Abbreviation
- 1.10.1 Introduction
- 1.10.2 Small Animal PET Using MWPC
- 1.10.3 Animal Models
- 1.10.4 Applications
- 1.10.5 Conclusion
- References
- 1.11. Emission Tomography Motion Compensation
- Abstract
- Acknowledgments
- 1.11.1 Introduction
- 1.11.2 Motion in PET and SPECT
- 1.11.3 Motion Types and Effects
- 1.11.4 Monitoring Methods
- 1.11.5 Motion Compensation
- 1.11.6 Conclusions
- References
- Glossary
- 1.12. Tracer Kinetic Models in PET
- Abstract
- 1.12.1 Introduction
- 1.12.2 Compartmental Models
- 1.12.3 Input Functions and the Tissue Response
- 1.12.4 K1, k2, Blood Flow, and Extraction
- 1.12.5 The Blood Flow Model
- 1.12.6 Glucose Metabolism in the Brain
- 1.12.7 Neuroreceptor Model
- 1.12.8 Occupancy of Receptor Sites Measured Using PET
- 1.12.9 The General PET Compartmental Model
- 1.12.10 Summary
- Appendix
- References
- 1.13. Absorbed Radiation Dose Assessment from Radionuclides
- Abstract
- Abbreviations
- 1.13.1 Introduction
- 1.13.2 The MIRD Schema
- 1.13.3 Facilitation and Limitations of Absorbed Dose Estimates
- 1.13.4 Dosimetry and Absorbed Dose Definitions
- 1.13.5 Summary
- Appendix A Conversions Between Traditional to SI Units
- Appendix B Unusual Case for Dose Estimate of Ingested Polonium-210
- Appendix C Example of Pu-239 Residual from Tissue Samples
- References
- Glossary
- Volume 2: X-Ray and Ultrasound Imaging
- Introduction to Volume 2: X-Ray and Ultrasound Imaging
- 2.01. Physical Basis of x-Ray Imaging
- Abstract
- Acknowledgments
- 2.01.1 Introductory Concepts
- 2.01.2 Interaction Processes
- 2.01.3 x-Ray Tubes and Beam Quality in Diagnostic Radiology
- 2.01.4 Examples of x-Ray Image Formation and Contrast Mechanisms
- References
- Relevant Websites
- Glossary
- 2.02. Physical Parameters of Image Quality
- Abstract
- 2.02.1 Introduction
- 2.02.2 Spatial Resolution
- 2.02.3 Noise
- 2.02.4 Contrast
- 2.02.5 SNR and Rose Model
- 2.02.6 Contrast-to-Noise Ratio and Contrast-Detail Analysis
- References
- Glossary
- 2.03. Computed Tomography
- Abstract
- 2.03.1 Introduction
- 2.03.2 The Concept of Tomography
- 2.03.3 From Projections to Slices
- 2.03.4 Evolution of CT Technology
- 2.03.5 Physical Limitations of CT Imaging
- 2.03.6 Protocol Optimization for Specialized Clinical Applications
- References
- Glossary
- 2.04. Oral and Maxillofacial Radiology
- Abstract
- Abbreviations
- 2.04.1 x-Ray Sources for Intraoral Radiography
- 2.04.2 Detectors for Intraoral Radiography
- 2.04.3 Panoramic Radiography
- 2.04.4 Cephalometric Radiography
- 2.04.5 Cone Beam Volumetric Imaging
- References
- Glossary
- 2.05. Breast Imaging
- Abstract
- Abbreviations
- 2.05.1 Requirements for Early Detection of Breast Cancer
- 2.05.2 x-Ray Sources
- 2.05.3 Digital Detectors
- 2.05.4 Mammography Equipment
- 2.05.5 Image Display
- 2.05.6 Digital Breast Tomosynthesis
- 2.05.7 Advanced Applications
- References
- Glossary
- 2.06. Dual-Energy and Spectral Imaging
- Abstract
- 2.06.1 Basic Theory (see also Chapter 2.01)
- 2.06.2 Current Clinical Implementations
- 2.06.3 Preclinical Dual-Energy and Spectral Imaging Implementations (see also Chapter 8.18)
- 2.06.4 Image Noise, Contrast, and Dose Considerations
- References
- Glossary
- 2.07. Quality Controls in x-Ray Imaging
- Abstract
- 2.07.1 Introduction
- 2.07.2 QC for Radiology Equipment
- 2.07.3 QCs in CR and DR Systems
- 2.07.4 QCs of Mammography System
- 2.07.5 QCs of Dental Radiology Equipment
- 2.07.6 QCs in Digital Angiography
- 2.07.7 QC of CT Equipment
- 2.07.8 Summary of Periodicity of QCs
- References
- Glossary
- 2.08. x-Ray Imaging with Coherent Sources
- Abstract
- 2.08.1 Introduction
- 2.08.2 Phase-Sensitive Techniques for x-Ray Imaging
- 2.08.3 Phase Retrieval and Post-Processing
- 2.08.4 Open Challenges and Future Perspectives
- References
- Glossary
- 2.09. High-Resolution CT for Small-Animal Imaging Research
- Abstract
- Acknowledgments
- 2.09.1 Introduction
- 2.09.2 Fundamentals of Micro-CT Design
- 2.09.3 Reconstruction Algorithms
- 2.09.4 Image Quality
- 2.09.5 Applications of Small-Animal Micro-CT
- 2.09.6 Conclusions
- References
- Glossary
- 2.10. Radiation Protection and Dosimetry in x-Ray Imaging
- Abstract
- 2.10.1 Introduction
- 2.10.2 The ICRP Framework for Radiological Protection
- 2.10.3 Dosimetric Quantities Relevant for Planar x-Ray Imaging
- 2.10.4 Dosimetric Quantities Relevant for CT Imaging
- 2.10.5 Dosimetry in Practice
- Appendix Most Commonly Used Dosimeters
- References
- Relevant Websites
- Glossary
- 2.11. Fundamentals of CT Reconstruction in 2D and 3D
- Abstract
- Abbreviations
- 2.11.1 Introduction
- 2.11.2 Radon Transform in 2D
- 2.11.3 Back Projection
- 2.11.4 Radon Transform Inversion
- 2.11.5 Practical Back Projection
- 2.11.6 Sinogram Restoration
- 2.11.7 Sampling Considerations
- 2.11.8 Linogram Reconstruction
- 2.11.9 2D Fan-Beam Tomography
- 2.11.10 3D Cone-Beam Reconstruction
- 2.11.11 Iterative Image Reconstruction
- 2.11.12 Summary and Future Trends
- References
- Relevant Websites
- Glossary
- 2.12. The Basics of Ultrasound
- Abstract
- 2.12.1 Introduction
- 2.12.2 US Propagation in an Ideal Fluid
- 2.12.3 US Propagation in a Nonideal Fluid
- 2.12.4 Pulse-Echo Imaging
- 2.12.5 Final Remarks
- References
- Relevant Websites
- Glossary
- 2.13. Ultrasound Imaging Arrays
- Abstract
- 2.13.1 Introduction
- 2.13.2 Array Transducers
- 2.13.3 Beam Profile
- 2.13.4 Apodization
- 2.13.5 Beam Processing
- 2.13.6 Echography: Reflection and Backscattering Imaging
- 2.13.7 Image Quality
- 2.13.8 Plane Wave Imaging (Ultrafast US Imaging)
- 2.13.9 Synthetic Aperture Imaging
- References
- Glossary
- 2.14. Doppler Ultrasound
- Abstract
- 2.14.1 Introduction
- 2.14.2 Continuous-Wave Doppler
- 2.14.3 Pulsed-Wave Doppler
- 2.14.4 Color Doppler Imaging
- 2.14.5 Vector Velocity Imaging
- 2.14.6 Recent Developments in Ultrasound Imaging of Blood Flow
- References
- 2.15. Ultrasound Imaging Modalities
- Abstract
- 2.15.1 Introduction
- 2.15.2 Reflection Imaging
- 2.15.3 Nonlinear Imaging
- 2.15.4 Quantitative Imaging
- 2.15.5 Emerging Imaging Modalities
- References
- Glossary
- 2.16. Nonlinear Acoustics
- Abstract
- 2.16.1 Introduction
- 2.16.2 Plane Waves in Nonlinear Lossless and Lossy Media
- 2.16.3 Three-Dimensional Nonlinear Equations
- 2.16.4 Harmonic Imaging
- References
- Glossary
- 2.17. Biomedical Applications of Ultrasound
- Abstract
- Abbreviations
- 2.17.1 Introduction
- 2.17.2 Clinical Diagnostic Pathways: The Old and the New
- 2.17.3 From Planar Through Tomographic, to Multidimensional Imaging
- 2.17.4 US in Clinical Practice: Advantages and Disadvantages
- 2.17.5 Brief Historical Notes and Modern Ideas
- 2.17.6 Why and How US Imaging Works
- 2.17.7 Probes and Transducers
- 2.17.8 Usual Application of US in Medicine
- 2.17.9 M-Mode and B-Mode Sonography
- 2.17.10 Basic Principles of Clinical US
- 2.17.11 Ultrasound Anatomy
- 2.17.12 Other Practical Applications of Clinical US
- 2.17.13 Operative Ultrasound
- 2.17.14 Doppler US
- 2.17.15 Doppler US for Hemodynamic Evaluation
- 2.17.16 Contrast-Enhanced Ultrasound
- 2.17.17 Elastography
- 2.17.18 The Physical Basis of Aerated Organs US Imaging
- 2.17.19 New Applications: Lung US and Integrated US Imaging
- 2.17.20 Conclusion
- References
- Glossary
- 2.18. Biological Effects in Diagnostic Ultrasound
- Abstract
- 2.18.1 Introduction
- 2.18.2 DUS Exposimetry and Dosimetry
- 2.18.3 Heating and Thermal Bioeffects in DUS
- 2.18.4 Nonthermal Tissue Interaction and Bioeffects in DUS
- 2.18.5 Bioeffects Associated with Gas-Body Activation and Cavitation in DUS
- 2.18.6 Critical Discussion of Bioeffects in DUS
- References
- Glossary
- 2.19. Simulation of Ultrasound Fields
- Abstract
- Nomenclature
- 2.19.1 Introduction
- 2.19.2 Basic Acoustic Equations
- 2.19.3 Semianalytical Methods
- 2.19.4 Numerical Methods for Linear Ultrasound Fields
- 2.19.5 Numerical Methods for Nonlinear Ultrasound Fields
- References
- Relevant Websites
- 2.20. Ultrasound Research Platforms
- Abstract
- 2.20.1 Introduction
- 2.20.2 General Characteristics of an Ideal Platform
- 2.20.3 State of the Art of Research Platforms
- 2.20.4 Detailed Architecture of Sample Platforms
- 2.20.5 Innovative Applications of Open Platforms
- 2.20.6 Discussion
- References
- Relevant Websites
- Glossary
- Volume 3: Magnetic Resonance Imaging and Spectroscopy
- Introduction to Volume 3: Magnetic Resonance Imaging and Spectroscopy
- 3.01. Fundamentals of MR Imaging
- Abstract
- 3.01.1 Introduction
- 3.01.2 MRI Equipment
- 3.01.3 Basic Theory of Nuclear Magnetic Resonance
- 3.01.4 Relaxation
- 3.01.5 Basic Pulse Sequences
- 3.01.6 Image Formation
- 3.01.7 Advanced Pulse Sequences
- 3.01.8 Parallel and Non-Cartesian Imaging
- References
- Glossary
- 3.02. Image Contrast and Resolution in MRI
- Abstract
- Nomenclature
- 3.02.1 Introduction to Spatial Resolution
- 3.02.2 Magnetic Field Gradients and Spatial Encoding
- 3.02.3 Slice Selection
- 3.02.4 Gradient Strength and Image Resolution
- 3.02.5 SNR Considerations
- 3.02.6 NMR Microscopy
- 3.02.7 Introduction to Image Contrast
- 3.02.8 T1-Weighted MRI
- 3.02.9 Suppression of T1 Components (Fluid Attenuated Inversion Recovery, Short TI Inversion Recovery, and Double-Inversion Recovery)
- 3.02.10 T2-Weighted MRI
- 3.02.11 Susceptibility Contrast
- 3.02.12 Functional MRI
- 3.02.13 Other Contrast Mechanisms
- 3.02.14 Contrast Agents
- References
- Relevant Websites
- Glossary
- 3.03. Perfusion Imaging and Hyperpolarized Agents for MRI
- Abstract
- Nomenclature
- 3.03.1 Introduction
- 3.03.2 Perfusion Imaging
- 3.03.3 Hyperpolarized Agents
- References
- Further Reading
- Glossary
- 3.04. High Versus Low Static Magnetic Fields in MRI
- Abstract
- Nomenclature
- 3.04.1 Introduction
- 3.04.2 Characteristics of Increasing Static Magnetic Fields
- 3.04.3 Some Consequences for Selected MR Applications
- 3.04.4 Discussion
- References
- Glossary
- 3.05. Functional Magnetic Resonance Imaging (fMRI)
- Abstract
- Abbreviations
- 3.05.1 From Neural Activity to the BOLD Signal – The Physiological Basis of fMRI
- 3.05.2 fMRI Methodology
- 3.05.3 From Research to Clinic – Clinical Use of fMRI
- 3.05.4 Conclusions
- References
- Relevant Websites
- Glossary
- 3.06. Diffusion-Weighted MRI
- Abstract
- Nomenclature
- Acknowledgments
- 3.06.1 Introduction
- 3.06.2 Diffusion Process and Scalar DW Imaging
- 3.06.3 Diffusion Tensor Imaging
- 3.06.4 q-Space, Diffusion Spectroscopy, and Imaging
- 3.06.5 HARDI and Beyond
- 3.06.6 Structural Connectivity Inference and Applications
- 3.06.7 Conclusion
- References
- Relevant Websites
- Glossary
- 3.07. MRI of the Brain
- Abstract
- Nomenclature
- Acknowledgment
- 3.07.1 Introduction
- 3.07.2 MR-Based Modalities for Assessing Brain Anatomy
- 3.07.3 MRI in Normal Brain Development
- 3.07.4 MRI in Normal Brain Aging
- 3.07.5 MRI of the Brain in Pathologic Conditions
- 3.07.6 Conclusion
- References
- Glossary
- 3.08. MRI of the Cardiovascular System
- Abstract
- Abbreviations
- 3.08.1 Introduction
- 3.08.2 Special Considerations and Challenges of CMR
- 3.08.3 Techniques and Sequences Used for CMR
- 3.08.4 Clinical Applications of CMR
- 3.08.5 Future Trends in CMR
- References
- Relevant Websites
- Glossary
- 3.09. MRI of the Liver
- Abstract
- Abbreviations
- 3.09.1 T1-Weighted Sequences
- 3.09.2 T2-Weighted Sequences
- 3.09.3 Gadolinium-Enhanced T1-Weighted Sequences
- 3.09.4 Superparamagnetic Iron Oxide Contrast Agent
- 3.09.5 Artifacts
- 3.09.6 Liver Protocol
- 3.09.7 General Considerations of MRI of the Liver at 3 T
- 3.09.8 Magnetic Resonance Spectroscopy of the Liver
- 3.09.9 Noncooperative Patients
- 3.09.10 Emerging Developments in MRI
- References
- Relevant Website
- Glossary
- 3.10. MRI of the Pancreas and Kidney
- Abstract
- Abbreviations
- Acknowledgments
- 3.10.1 Introduction
- 3.10.2 Techniques
- 3.10.3 MRI of the Pancreas
- 3.10.4 MRI of the Kidney
- 3.10.5 Conclusion
- References
- Glossary
- 3.11. MRI of the Small and Large Bowel
- Abstract
- Abbreviations
- 3.11.1 General Issues in Small Bowel Imaging
- 3.11.2 MRI of the SB: Technical Aspects
- 3.11.3 Clinical Applications
- 3.11.4 MRI of the Large Bowel
- 3.11.5 MR Colonography: Technical Aspects
- 3.11.6 Indications for MR Colonography
- 3.11.7 MRI of the Small and Large Bowel: Conclusions
- References
- Glossary
- 3.12. MR Imaging of the Prostate
- Abstract
- Abbreviations
- Acknowledgment
- 3.12.1 Introduction
- 3.12.2 Equipment
- 3.12.3 MRI Examination for Prostate Cancer
- 3.12.4 Role of MRI in Prostate Cancer
- 3.12.5 Functional Magnetic Resonance Imaging of the Prostate
- 3.12.6 Conclusion
- References
- Glossary
- 3.13. MRI of the Breast
- Abstract
- Abbreviations
- 3.13.1 Introduction
- 3.13.2 Special MRI Techniques for Breast Imaging
- 3.13.3 Basic Breast Pathology
- 3.13.4 MRI of Nonmalignant, Nontumorous Breast Lesions
- 3.13.5 MRI of Benign Breast Tumors
- 3.13.6 MRI of Malignant Breast Tumors
- 3.13.7 Dynamic MRI
- 3.13.8 DWI of Breast Tumors
- 3.13.9 Susceptibility-Weighted Imaging for Microcalcifications
- 3.13.10 Biological Correlation
- 3.13.11 Clinical Applications
- 3.13.12 Conclusion
- References
- Glossary
- 3.14. MRI of the Female Genitourinary Tract
- Abstract
- Abbreviations
- 3.14.1 Introduction
- 3.14.2 Normal Anatomy
- 3.14.3 MRI Techniques in the Female Pelvis
- 3.14.4 Pathologies of Uterus
- 3.14.5 Adnexal Disease
- 3.14.6 Conclusion
- References
- Glossary
- 3.15. Three-Dimensional Multispectral MRI for Patients with Metal Implants
- Abstract
- 3.15.1 Introduction
- 3.15.2 Theory
- 3.15.3 Application of 3D-MSI Methods
- 3.15.4 Discussion
- 3.15.5 Conclusions
- References
- Glossary
- 3.16. Fundamentals of MR Spectroscopy
- Abstract
- 3.16.1 Basic Concepts
- 3.16.2 Nuclei that Can Be Used for MRS
- 3.16.3 Key Methodologies
- 3.16.4 Complexities and Caveats
- References
- Further Reading
- Relevant Website
- Glossary
- 3.17. Magnetic Resonance Spectroscopy (MRS) of the Brain
- Abstract
- Abbreviations
- Acknowledgments
- 3.17.1 Introduction
- 3.17.2 Neurodegenerative Diseases
- 3.17.3 Psychiatric Disorders
- 3.17.4 Somatoform Disorders
- 3.17.5 Vascular Disorders
- 3.17.6 Intracranial Neoplasms
- 3.17.7 Infections
- 3.17.8 Demyelinating Diseases
- 3.17.9 Developmental Disorders
- 3.17.10 Epilepsy
- 3.17.11 Conclusion
- References
- Glossary
- 3.18. MR Spectroscopy (MRS) of the Prostate
- Abstract
- Abbreviations
- Acknowledgments
- 3.18.1 Introduction
- 3.18.2 Prostate Cancer
- 3.18.3 MRS of the Prostate
- 3.18.4 Clinical Applications of MRS for Prostate Cancer
- 3.18.5 Summary
- References
- Glossary
- 3.19. MRS of the Breast
- Abstract
- Abbreviations
- Acknowledgments
- 3.19.1 Introduction
- 3.19.2 1H-MRS and the Choline Signal in the Diagnosis of Breast Cancer
- 3.19.3 Monitoring Response to Neoadjuvant Systemic Therapy with MRI and 1H-MRS
- 3.19.4 Technical Aspects
- 3.19.5 In Situ 31P-MRS of Breast Cancer
- 3.19.6 Future Directions – Hyperpolarized 13C Choline Imaging and Spectroscopy
- References
- Glossary
- 3.20. Potential and Obstacles of MRS in the Clinical Setting
- Abstract
- Abbreviations
- Acknowledgments
- 3.20.1 Introduction
- 3.20.2 Some Basics Concerning MRS in the Clinical Setting
- 3.20.3 Conventional Approaches to Processing Localized Spectra
- 3.20.4 Obstacles Related to Fourier-Based Analysis and Postprocessing Fitting
- 3.20.5 What Do Clinicians Expect from MRS?
- 3.20.6 Conclusion
- References
- Further Reading
- Glossary
- 3.21. Magnetic Resonance Spectroscopic Imaging
- Abstract
- Nomenclature
- 3.21.1 Introduction
- 3.21.2 Multiple Types of Imaging Based on the Chemical Shift
- 3.21.3 Theory
- 3.21.4 Technology
- 3.21.5 Quantification
- 3.21.6 Applications in Humans
- 3.21.7 Other Applications
- 3.21.8 Problems of MRSI
- 3.21.9 Conclusions
- References
- Glossary
- 3.22. Clinical Applications of Magnetic Resonance Spectroscopic Imaging
- Abstract
- Abbreviations
- Acknowledgment
- 3.22.1 Introduction
- 3.22.2 Diagnosis/Detection
- 3.22.3 Grading/Assessment of Aggressiveness
- 3.22.4 Treatment Selection/Response Assessment/Prognosis
- 3.22.5 Conclusion
- References
- Glossary
- 3.23. In Vivo Two-Dimensional Magnetic Resonance Spectroscopy
- Abstract
- Nomenclature
- Acknowledgments
- 3.23.1 Introduction
- 3.23.2 Basics of 2D MRS
- 3.23.3 Modeling a Single Isolated Spin −1/2 System
- 3.23.4 Modeling a Weakly Coupled Spin-Pair System
- 3.23.5 2D Localized Correlated Spectroscopy
- 3.23.6 Clinical Applications of Single Voxel 2D L-COSY MRS
- 3.23.7 Other Sequences in Single Voxel 2D MRS
- 3.23.8 Multivoxel 2D MRS
- 3.23.9 Quantification in 2D MRS
- 3.23.10 Future Directions
- References
- Glossary
- 3.24. Basic Science Input into Clinical MR Modalities
- Abstract
- Abbreviations
- Acknowledgments
- 3.24.1 Introduction
- 3.24.2 Metabolic Biomarkers of Breast Cancer – MRS of Choline Metabolism
- 3.24.3 Sodium MRI of Renal Function
- 3.24.4 Final Comments
- References
- Glossary
- 3.25. Mathematically Optimized MR Reconstructions
- Abstract
- Abbreviations
- Acknowledgments
- 3.25.1 Introduction
- 3.25.2 Standard Versus Advanced Signal Processing Methods in MR
- 3.25.3 Results of the FPT Within 1D MRS
- 3.25.4 Other Applications of the FPT Within MR
- 3.25.5 Perspectives
- References
- Further Reading
- Glossary
- 3.26. Interdisciplinarity of MR and Future Perspectives with a Focus on Screening
- Abstract
- Nomenclature
- Acknowledgments
- 3.26.1 Introduction
- 3.26.2 Challenges Entailed in the Interdisciplinarity of MR
- 3.26.3 Advantages and Disadvantages of MR with a Focus on Screening
- 3.26.4 Outlooks for the Future of MR with a Focus on Timely Cancer Diagnosis
- 3.26.5 Conclusion: Public Health and Policy Implications
- References
- Further Reading
- Relevant Websites
- Glossary
- Volume 4: Optical Molecular Imaging
- Introduction to Volume 4: Optical Molecular Imaging
- 4.01. Bio-optical Imaging
- Abstract
- Nomenclature
- 4.01.1 Introduction
- 4.01.2 Light Produced by Living Organisms
- 4.01.3 How Do Living Organisms Produce Light?
- 4.01.4 So What Exactly is Bioluminescence?
- 4.01.5 Functions of Bioluminescence
- 4.01.6 Types of Bioluminescence, Bioluminescent Organs, and Control of the Light Emission
- 4.01.7 Fluorescence
- 4.01.8 Luminescence Science: From Past to Present
- 4.01.9 Conclusion
- References
- Glossary
- 4.02. Signal-Relevant Properties of Fluorescent Labels and Optical Probes and Their Determination
- Abstract
- Abbreviations
- Acknowledgment
- 4.02.1 Introduction
- 4.02.2 Conclusion
- References
- Glossary
- 4.03. Fluorescent Proteins
- Abstract
- 4.03.1 The Green Fluorescent Protein Nude Mouse
- 4.03.2 The Nestin-Driven GFP Nude Mouse
- 4.03.3 The RFP Nude Mouse
- 4.03.4 The CFP Nude Mouse
- 4.03.5 Cancer Cells Expressing GFP in the Nucleus and RFP in the Cytoplasm
- 4.03.6 Imaging the Recruitment of Cancer-Associated Fibroblasts by Liver-Metastatic Colon Cancer
- 4.03.7 Multicolored Stroma to Image Interaction with Cancer Cells
- 4.03.8 Making Patient Primary Tumors Glow in Nude Mice by Coloring the Stroma with Fluorescent Proteins
- 4.03.9 Making Metastasis from Patient Tumors Glow in Nude Mice by Coloring the Stroma with GFP
- 4.03.10 Non-invasive Imaging of Orthotopic Pancreatic-Cancer-Patient Tumors Colored by GFP and RFP Stroma in Nude Mice
- 4.03.11 Color-Coded Real-Time Subcellular Fluorescence Imaging of the Interaction between Cancer and Stromal Cells in Live Mice
- 4.03.12 Non-invasive Subcellular Multicolor Imaging of Cancer Cell–Stromal Cell Interaction and Drug Response in Real Time
- 4.03.13 Stromal Cells are Necessary for Cancer Cells to Metastasize
- 4.03.14 Visualizing Stromal Cell Dynamics by Spinning Disk Confocal Microscopy
- 4.03.15 Conclusions
- Dedication
- References
- Glossary
- 4.04. Fluorescent Nanoparticles
- Abstract
- 4.04.1 Introduction to Luminescence
- 4.04.2 Materials and Synthesis
- 4.04.3 Specific Aspects for Medical Use
- References
- Glossary
- 4.05. Molecular Imaging Probes: Activatable and Sensing Probes
- Abstract
- 4.05.1 Introduction
- 4.05.2 Activation Strategies
- 4.05.3 Photochemical Aspects of Probe Activation
- 4.05.4 Targeting Moieties
- 4.05.5 Molecular Imaging Applications
- 4.05.6 Summary
- References
- Relevant Website
- Glossary
- 4.06. Fluorescence Resonance Energy Transfer Probes
- Abstract
- Abbreviations
- 4.06.1 Introduction
- 4.06.2 The Principle of Resonance Energy Transfer
- 4.06.3 Design of FRET Pairs
- 4.06.4 FRET Applications
- 4.06.5 Intramolecular and Intermolecular FRET
- 4.06.6 Methods to Detect FRET
- 4.06.7 Conclusion
- References
- Glossary
- 4.07. Multimodal Optical Imaging Probes
- Abstract
- 4.07.1 Introduction
- 4.07.2 Multimodal Optical Imaging Probes
- 4.07.3 Discussion
- 4.07.4 Conclusion
- References
- Glossary
- 4.08. Fluorescent Reporters and Optical Probes
- Abstract
- Abbreviations
- 4.08.1 Introduction
- 4.08.2 Classes and Optical Properties of Fluorescent Dyes for Biomedical Imaging
- 4.08.3 Chemistry of Fluorescent Dyes
- 4.08.4 Summary and Conclusion
- References
- Glossary
- 4.09. Advanced Fluorescence Microscopy
- Abstract
- 4.09.1 Introduction
- 4.09.2 The Fundamentals of Optical Microscopy
- 4.09.3 Advanced Linear Fluorescence Microscopy
- 4.09.4 Nonlinear Superresolution Fluorescence Microscopy
- 4.09.5 Conclusion
- References
- 4.10. Uncovering Tumor Biology by Intravital Microscopy
- Abstract
- Acknowledgment
- 4.10.1 Introduction
- 4.10.2 Animal Models for IVM
- 4.10.3 Intravital Microscopic Modalities
- 4.10.4 IVM Studies for Tumor Biology
- 4.10.5 Summary and Outlook
- References
- Glossary
- 4.11. Two-Photon Microscopy
- Abstract
- 4.11.1 Introduction
- 4.11.2 Basics of Laser Scanning Microscopy: The Excitation and Emission Process
- 4.11.3 Linear Optical Microscopy
- 4.11.4 Nonlinear Optical Microscopy
- 4.11.5 Second-Harmonic Generation Microscopy
- 4.11.6 Nonlinear Versus Linear Microscopy in Biomedical Imaging
- 4.11.7 Biomedical Application of TPLSM
- 4.11.8 Conclusion
- References
- Glossary
- 4.12. Optical Frequency-Domain Imaging
- Abstract
- 4.12.1 Introduction
- 4.12.2 High-Sensitivity and High-Speed OFDI
- 4.12.3 System Implementation
- 4.12.4 Functional OFDI
- 4.12.5 Endoscopic OFDI
- References
- No. of pages: 4056
- Language: English
- Edition: 1
- Published: July 25, 2014
- Imprint: Elsevier
- Hardback ISBN: 9780444536327
- eBook ISBN: 9780444536334
AB