
Cavity Polaritons
- 1st Edition, Volume 32 - November 26, 2003
- Imprint: Academic Press
- Authors: Alexey Kavokin, Guillaume Malpuech
- Language: English
- eBook ISBN:9 7 8 - 0 - 0 8 - 0 4 8 1 3 7 - 1
Volume 32 of the series addresses one of the most rapidly developing research fields in physics: microcavities. Microcavities form a base for fabrication of opto-electronic devices… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteVolume 32 of the series addresses one of the most rapidly developing research fields in physics: microcavities. Microcavities form a base for fabrication of opto-electronic devices of XXI century, in particular polariton lasers based on a new physical principle with respect to conventional lasers proposed by Einstein in 1917. This book overviews a theory of all major phenomena linked microcavities and exciton-polaritons and is oriented to the reader having no background in solid state theory as well as to the advanced readers interested in theory of exciton-polaritons in microcavities. All major experimental discoveries in the field are addressed as well.
· The book is oriented to a general reader and is easy to read for a non-specialist.· Contains an overview of the most essential effects in physics of microcavities experimentally observed and theoretically predicted during the recent decade such as:. · Bose-Einstein condensation at room temperature.· Lasers without inversion of population.· Microcavity boom: optics of the XXI century!· Frequently asked questions on microcavities and responses without formulas. · Half-light-half-matter quasi-particles: base for the future optoelectronic devices
Researchers working in laboratories and industries working on opto-electronic devices, students studying the physics of semiconductors and opto-electronics.
PrefaceIntroduction Chapter 0: Frequently asked questions.Part 1: Linear properties of microcavitiesChapter 1: Dispersion of cavity polaritons; Reflection and transmission of light by quantum wells containing excitons; Reflectivity of Bragg mirrors; Dispersion of exciton-polaritons in microcavities containing a single quantum well.Chapter 2: Examples of microcavity systems; Multiple quantum wells in a cavity; Coupled microcavities; Bulk microcavities; Regular gratings of quantum wires and quantum dots in a microcavity;Magnetic field effect. Kerr and Faraday rotation.Chapter 3. Disorder effect on cavity polaritons; Reflection and elastic scattering of light by localised excitons; Motional narrowing of cavity polaritons; Photoluminescence and resonant Rayleigh scattering from microcavities (linear regime);Time-resolved reflection of light from quantum wells and microcavities.Part 2: Non-linear optical properties of microcavities.Chapter 4: Photoluminescence of strongly coupled microcavities; Qualitative feature; First PL experiments performed on microcavities; Relaxation of cavity polaritons: qualitative features; Semi-classical treatment of the relaxation kinetics of cavity polaritons; The semi-classical Boltzmann equation; Polariton-structural disorder interaction;Polariton decay; Polariton-phonon interaction; Polariton electron interaction; Polariton-polariton interaction; Numerical solution of Boltzmann equations, practical aspects; Relaxation kinetics of cavity polariton; Quantitative analysis of polariton relaxation kinetics; Presentation of recent PL results, comparison with theory.Chapter 5: Resonant excitation case and parametric amplification; Experimental aspects; Early stage;The Savvidis-Baumberg breakthrough. Experimental details; The cw excitation case; Dressing of the polariton dispersion induced by stimulated scattering; Spin selection rules; A few other experimental results; Theoretical approach: Semi-classical model; The Boltzmann equation; Stationary solution and threshold; Theoretical approach: quantum model; Diagonalisation of the exciton-photon Hamiltonian; Polariton-polariton interaction;Equation of motion for the operators; Three-level model; Analytical solution of the three-level model in the case of cw pumping: The parametric oscillation model; Coherence evolution and symmetry breaking; Dressing of the dispersion induced by polariton condensates.Chapter 6: Toward polariton Bose condensation and polariton lasers; Eighty years of research on BEC;Einstein proposal; Experimental realization;"Modern Definition" of Bose Einstein Condensation;Exciton and polariton specifics; Thermodynamic properties of cavity polariton systems; Interacting bosons and Bogoliubov model; Polariton superfluidity and Kosterlitz-Thouless phase transition; Quasi-condensation and local effects;Relaxation kinetics of cavity polaritons: towards polariton lasing; Experimental quest of the polariton laser (1996-2003); Theoretical description of the polariton laser; How to overcome the bottleneck effect? ;Spin Dynamics of Exciton-Polaritons in Microcavities.Appendix Index
- Edition: 1
- Volume: 32
- Published: November 26, 2003
- No. of pages (eBook): 246
- Imprint: Academic Press
- Language: English
- eBook ISBN: 9780080481371
Read Cavity Polaritons on ScienceDirect