
Case Studies in Mathematical Modeling for Medical Devices
How Pulse Oximeters and Doppler Ultrasound Fetal Heart Rate Monitors Work
- 1st Edition - November 12, 2024
- Imprint: Academic Press
- Author: John Crowe
- Language: English
- Paperback ISBN:9 7 8 - 0 - 3 2 3 - 9 5 4 7 2 - 3
- eBook ISBN:9 7 8 - 0 - 3 2 3 - 9 5 4 7 3 - 0
Case Studies in Mathematical Modelling for Medical Devices: How Pulse Oximeters and Doppler Ultrasound Fetal Heart Rate Monitors Work focuses on two medical devices: pulse oximet… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteCase Studies in Mathematical Modelling for Medical Devices: How Pulse Oximeters and Doppler Ultrasound Fetal Heart Rate Monitors Work focuses on two medical devices: pulse oximeters and Doppler ultrasound fetal heart rate monitors. The mathematical topics needed to explain their operation from first principles are introduced. These broadly cover the statistics of random processes and Fourier based signal processing. They are used to explain the devices’ operation from first principles to how clinically relevant information is extracted from the devices’ raw outputs. .
The book is for MSc and PhD students working in the area who want a quick, clear introduction to the topics, upper-division undergrads as part of biomedical engineering or applied math degree courses, biomedical engineers looking for a quick "refresher course" and clinicians interested in the operation of the instruments they use.
The book is for MSc and PhD students working in the area who want a quick, clear introduction to the topics, upper-division undergrads as part of biomedical engineering or applied math degree courses, biomedical engineers looking for a quick "refresher course" and clinicians interested in the operation of the instruments they use.
- Describes, from first principles, the operation of two medical diagnostic devices
- Introduces diverse and widely used mathematical topics
- Uses this knowledge to model the physical processes that underpin the devices’ operation
- Explains how clinically relevant information is obtained from the monitors’ raw outputs.
MSc and PhD students working in the area who want a quick, clear introduction to the topics, upper-division undergrads as part of biomedical engineering or applied math degree courses, biomedical engineers looking for a quick "refresher course" and clinicians interested in the operation of the instruments they use.
- Title of Book
- Cover image
- Title page
- Table of Contents
- Copyright
- Preface
- Acknowledgments
- Introduction to the book
- Part 1: Maths for oximetry
- List of symbols and abbreviations
- Acronyms
- Probabilities
- Symbols
- Absorption cross-section and coefficients
- Hemoglobin
- Attenuation
- Pathlengths
- Light energy
- Chapter 1: Introduction
- 1.1. Oximetry
- 1.2. Probability
- Chapter 2: Discrete probability distributions
- 2.1. Dice throwing and the probability mass function
- 2.1.1. Notation
- 2.1.2. Some “rules” of probability
- 2.2. Example: coin tossing
- 2.3. Cumulative distribution function
- 2.4. Summary
- 2.5. Problems
- Chapter 3: Continuous probability distributions
- 3.1. Pathlengths through a scattering sample
- 3.1.1. Bar chart of counts
- 3.1.2. Probability mass
- 3.1.3. Probability density
- 3.2. Probability density function
- 3.2.1. Pathlength simulation
- 3.3. Cumulative distribution function
- 3.4. Example: uniform distribution
- 3.5. Summary
- 3.6. Problems
- Chapter 4: Summary statistics, moments, and cumulants
- 4.1. The mean and its synonyms
- 4.2. Calculating the mean: discrete data
- 4.2.1. Two dice
- 4.2.2. Three coins
- 4.3. Higher order and central moments
- 4.3.1. Raw moments
- 4.3.2. Central moments
- 4.4. Variance: discrete data
- 4.4.1. Variance – the second central moment
- 4.4.2. Variance examples: dice and coins
- 4.5. Mean and variance: continuous data
- 4.5.1. Example: uniform distribution
- 4.6. Moment generating function
- 4.6.1. Introduction
- 4.6.2. MGF in series form
- 4.6.3. Discrete example: coin tossing
- 4.6.4. Continuous example: uniform distribution
- 4.7. Cumulant generating function
- 4.8. Moments and cumulants
- 4.9. Summary
- 4.10. Problems
- Chapter 5: Commonly encountered distributions
- 5.1. Introduction
- 5.2. Uniform distribution
- 5.3. Binomial distribution
- 5.3.1. Moment generating function
- 5.3.2. Mean and variance
- 5.4. Poisson distribution
- 5.4.1. Derivation
- 5.4.2. Mean and variance
- 5.4.3. Moment generating function
- 5.5. Exponential distribution
- 5.5.1. Mean and variance
- 5.5.2. Cumulants
- 5.5.3. Exponential and Poisson relationship
- 5.6. Gaussian distribution
- 5.6.1. Moment and cumulant generating function
- 5.7. Wald distribution
- 5.7.1. Gaussian and Wald relationship
- 5.8. Summary
- 5.9. Problems
- Chapter 6: Shifting and scaling distributions
- 6.1. Summary statistics—PDF and CDF
- 6.1.1. Expectation value: E(Y)
- 6.1.2. Variance
- 6.1.3. CDF
- 6.1.4. PDF
- 6.2. Example 1: uniform distribution
- 6.3. Example 2: Gaussian distribution
- 6.4. Summary
- Chapter 7: Random samples from distributions
- 7.1. Sampling from a discrete distribution
- 7.2. Sampling from a continuous distribution
- 7.2.1. How it works
- 7.2.2. Observations to use
- 7.2.3. Derivation of the inverse CDF
- 7.3. Examples
- 7.3.1. Example: uniform random variates
- 7.3.2. Example: simple continuous distribution
- 7.3.3. Example: exponential random variates
- 7.4. Summary
- 7.5. Problems
- Part 2: Oximeters
- Chapter 8: Introduction: oximetry
- 8.1. What oximetry measures
- 8.2. Oximetry—an overview
- 8.2.1. Absorption coefficients
- 8.2.2. Lambert–Beer law
- 8.2.3. Oximetry on a non-scattering sample
- 8.2.4. Light scattering
- 8.2.5. Attenuation of an absorbing and scattering sample
- 8.2.6. Pulse oximetry
- 8.2.7. Oximetry on a population
- 8.2.8. Masimo® and the Discrete Saturation Transform (DST)®
- 8.2.9. Modeling light propagation
- 8.2.10. A zoo of oximeters
- 8.3. Summary
- Chapter 9: Absorption coefficients
- 9.1. Chromophores
- 9.2. Chromophores in tissue
- 9.3. Absorption cross-sections and coefficients
- 9.4. Molar absorption coefficients
- 9.4.1. Things to note
- 9.5. Summary
- 9.6. Problems
- Chapter 10: Lambert–Beer law
- 10.1. Lambert–Beer law derivation
- 10.1.1. Via integral calculus
- 10.1.2. ⋯ and a probability based approach
- 10.2. Graphical display of the Lambert–Beer law
- 10.3. Microscopic Lambert–Beer law
- 10.4. Practicalities
- 10.4.1. Pathlength
- 10.4.2. Optical density
- 10.5. Summary
- Chapter 11: Oximetry on non-scattering samples
- 11.1. Definition of oxygen saturation
- 11.2. Standard oximetry equation via [HbO2] and [Hb]
- 11.2.1. Cramer's rule
- 11.3. Standard oximetry equation via equating (d[Htot])
- 11.4. The theoretical SO2 calibration equation
- 11.4.1. When A1A2=0
- 11.5. Incremental measurements
- 11.6. Summary
- Chapter 12: Scattering and the Lambert–Beer law
- 12.1. Scattering model
- 12.2. Lambert–Beer law revisited
- 12.3. Multiple pathlength model
- 12.4. A versus μa gradient ≡ mean pathlength
- 12.5. Summary
- 12.6. Problems
- Chapter 13: Attenuation versus absorption—a theoretical derivation
- 13.1. Introduction
- 13.2. Transmittance of a purely scattering sample
- 13.3. Transmittance upon adding absorber
- 13.3.1. Transmittance and the MGF
- 13.3.2. Transmittance and the CGF
- 13.4. Attenuation of a scattering and absorbing sample
- 13.5. Effect of a base and incremental absorber
- 13.6. The advantages of incremental measurements
- 13.7. Examples
- 13.7.1. Light impulse
- 13.7.2. Gaussian
- 13.7.3. Poisson distribution
- 13.7.4. Fluorescence lifetime measurements
- 13.8. Heterogeneous media
- 13.9. Summary
- Chapter 14: Pulse oximetry
- 14.1. Incremental Lambert–Beer law
- 14.2. Measuring incremental attenuation
- 14.2.1. Ear oximeter
- 14.2.2. Pulse oximeter
- 14.3. The (AC/DC) and R ratios
- 14.4. Wavelength choice
- 14.4.1. The size of the AC signal
- 14.5. Calibration and B
- 14.6. Summary
- Chapter 15: Pulse oximetry on a population
- 15.1. Invariance of S between individuals
- 15.2. The significance of the invariance of SR=0
- 15.3. Summary
- Chapter 16: The Masimo Corporation's oximeters
- 16.1. Conventional pulse oximetry
- 16.2. The Masimo Corporation's approach
- 16.3. Processing
- 16.3.1. Error signal: e˜
- 16.3.2. Adaptive filter
- 16.3.3. Discrete Saturation Transform (DST)®
- 16.3.4. From r(s) to SO2
- 16.4. A simple math description
- 16.5. Arterial and venous component model
- 16.5.1. r(s)=ra
- 16.5.2. r(s)≈ra
- 16.5.3. r(s)≠ra≠rv
- 16.5.4. r(s)=rv
- 16.6. Summary
- Chapter 17: Modeling light propagation
- 17.1. Modeling the PPSF
- 17.1.1. Photon diffusion
- 17.1.2. Monte Carlo modeling
- 17.2. Applying MC methods to tissue modeling
- 17.2.1. Method of photon propagation
- 17.2.2. Model parameters
- 17.3. Absorption and scattering mean-free path
- 17.3.1. Absorption MFP
- 17.3.2. Scattering MFP
- 17.4. Scattering direction
- 17.4.1. Deflection angle ϕ
- 17.4.2. Azimuthal angle θ
- 17.5. Example
- 17.6. Summary
- Chapter 18: The oximeter zoo
- 18.1. Introduction
- 18.1.1. Oximetry: a recap
- 18.1.2. Why oximetry is difficult
- 18.1.3. Pulse oximetry—a recap
- 18.2. Sites, spectra, and substances
- 18.2.1. Sites
- 18.2.2. Spectra
- 18.2.3. Substances
- 18.3. Constant intensity (modified Lambert–Beer) oximeters
- 18.3.1. Removal of offset G
- 18.3.2. Hewlett Packard (HP) ear oximeter
- 18.3.3. Near infrared spectroscopy
- 18.4. Non-constant intensity oximeters
- 18.4.1. Use of the PPSF
- 18.4.2. Frequency domain analysis
- 18.4.3. Time integrated spectroscopy
- 18.5. Hyper-spectral processing
- 18.5.1. Methods
- 18.5.2. Forms of A versus μa
- 18.6. Summary
- Part 3: Appendices for oximeters
- Chapter 19: Variance via raw moments
- Chapter 20: Taylor series
- 20.0.0.1. Exponential
- 20.0.0.2. Binomial series
- 20.0.0.3. Logarithmic series
- 20.0.0.4. Arctan series
- Chapter 21: Binomial coefficients and series
- 21.1. Binomial theorem
- 21.2. Binomial coefficient
- 21.3. n choose b
- Chapter 22: Calculus
- 22.1. Introduction
- 22.2. Calculus of natural logarithms
- 22.3. Derivative of a product
- 22.4. Derivative of a quotient
- 22.5. Integration by parts
- 22.6. Chain rule—differentiation using a substitution
- 22.7. L'Hopital's rule
- 22.8. First-order differential equation: for light attenuation
- 22.8.1. The integral of ∫dII
- 22.8.2. Boundary condition
- 22.9. Second-order differential equation
- Chapter 23: Derivatives of attenuation versus absorbance
- Chapter 24: Modeling the PPG
- Chapter 25: Fluorescence lifetime measurements
- 25.1. Introduction
- 25.2. Theory
- 25.2.1. Modulation depth
- 25.2.2. Phase delay
- Chapter 26: Logarithms
- 26.1. Introduction
- 26.2. Common bases
- 26.3. Logarithmic manipulations
- 26.4. Examples
- Part 4: Maths for DUS-FHR
- List of symbols and abbreviations
- Acronyms
- Greek symbols – [units: example]
- Symbols – [units: example]
- Chapter 27: Introduction
- 27.1. Doppler ultrasound fetal heart rate monitoring
- 27.2. Contents
- 27.2.1. Waves
- 27.2.2. Sinusoids
- 27.2.3. Beats
- 27.2.4. Fourier analysis
- 27.2.5. Frequency domain filtering
- 27.2.6. Hilbert transform
- 27.2.7. Convolution
- 27.2.8. Modulation
- 27.2.9. Sampling
- 27.2.10. Autocorrelation
- 27.3. Summary
- Chapter 28: Waves
- 28.1. A boat at sea
- 28.1.1. Wavelength λ
- 28.1.2. Period T and frequency f
- 28.1.3. Wave speed v
- 28.2. Summary
- 28.3. Exercises
- Chapter 29: Sinusoids
- 29.1. Ball on a string model
- 29.1.1. Period T and frequency f
- 29.1.2. Angular frequency ω
- 29.1.3. Examples
- 29.2. Trigonometric form
- 29.2.1. Example: boat at sea
- 29.3. Cartesian form
- 29.4. Comparison of forms
- 29.4.1. Example
- 29.5. Frequencies and harmonics
- 29.6. Summary
- 29.7. Problems
- Chapter 30: Beats
- 30.1. Pictorial description
- 30.2. Math
- 30.3. Summary
- 30.4. Exercises
- Chapter 31: Fourier analysis
- 31.1. Cartesian “real” Fourier analysis
- 31.1.1. Example: time domain
- 31.1.2. Example: frequency domain
- 31.2. Exponential “complex” form
- 31.2.1. Derivation
- 31.2.2. Example
- 31.3. Trigonometric frequency spectrum
- 31.4. Summary
- 31.5. Problems
- Chapter 32: Frequency domain filtering
- 32.1. Procedure
- 32.2. Example
- 32.3. Summary
- 32.4. Problems
- Chapter 33: Hilbert transform and the analytic signal
- 33.1. Introduction
- 33.2. Defining the Hilbert transform
- 33.2.1. Illustration of phase shift
- 33.3. Deriving the HT
- 33.3.1. HT transformation
- 33.4. Analytic signal
- 33.4.1. Definition
- 33.4.2. Obtaining the analytic signal
- 33.5. Instantaneous amplitude and frequency
- 33.5.1. Examples
- 33.6. Summary
- 33.7. Problems
- Chapter 34: Convolution
- 34.1. The process
- 34.2. Convolving in frequency
- 34.3. Examples
- 34.3.1. Example 1: cos⊗cos
- 34.3.2. Example 2: cos⊗sin
- 34.3.3. Example 3: sin⊗sin
- 34.3.4. Verification
- 34.4. Trigonometric form
- 34.5. Summary
- 34.6. Problems
- Chapter 35: Modulation
- 35.1. Modulation process
- 35.2. Amplitude modulation
- 35.2.1. Modulation
- 35.2.2. Demodulation
- 35.3. Homodyne or heterodyne
- 35.4. DUS-FHR
- 35.5. Summary
- 35.6. Problems
- Chapter 36: Sampling
- 36.1. Sampling with a comb
- 36.1.1. Sampling comb
- 36.2. Sampling via convolution
- 36.3. Sampling rate limits
- 36.3.1. Anti-aliasing filters
- 36.4. Summary
- Chapter 37: Autocorrelation
- 37.1. Simple example
- 37.2. Periodicity
- 37.3. Examples
- 37.3.1. Pulse train
- 37.3.2. Periodicity of a noisy signal
- 37.4. Summary
- 37.5. Problems
- Part 5: DUS-FHR
- Chapter 38: Fetal heart rate monitoring
- 38.0.1. Fetal heart rate format
- 38.1. Ways of monitoring FHR [26]
- 38.1.1. Doppler ultrasound-based monitoring
- 38.2. Improving DUS-FHR monitoring
- 38.3. Chapter structure
- 38.3.1. Ultrasound
- 38.3.2. Doppler shifts
- 38.3.3. Extraction of Doppler shifts
- 38.3.4. DUS-FHR monitoring
- 38.3.5. Band-pass filtering
- 38.3.6. Pulsed systems
- 38.4. Summary
- Chapter 39: Ultrasound
- 39.1. Sound
- 39.1.1. Waves
- 39.1.2. Quantification
- 39.2. Ultrasound
- 39.2.1. Impedance matching
- 39.3. Summary
- Chapter 40: Doppler ultrasound
- 40.1. Insonation
- 40.2. Received ultrasound
- 40.2.1. Static reflector
- 40.2.2. Steady motion
- 40.2.3. Sinusoidal motion
- 40.2.4. Motion of cardiac structure
- 40.3. Summary
- 40.4. Problems
- Chapter 41: Doppler shift extraction
- 41.1. Introduction
- 41.2. Down-conversion via modulation
- 41.2.1. Static and Doppler shifted components
- 41.2.2. Clutter
- 41.3. Homodyne modulation: ω′=ωc
- 41.3.1. Filtering
- 41.3.2. Example
- 41.4. Lack of directional information
- 41.4.1. Heterodyne demodulation solution: ω′<ωc
- 41.5. In-phase and quadrature representation
- 41.5.1. I and Q derived using straight multiplication
- 41.5.2. Modeling I and Q
- 41.6. Directional down-shifting
- 41.6.1. Example: two targets with constant velocities
- 41.7. Further examples
- 41.7.1. Sinusoidal motion
- 41.7.2. Cardiac simulation
- 41.8. Summary
- 41.9. Problems
- Chapter 42: DUS-FHR monitoring
- 42.1. Introduction
- 42.2. The heart
- 42.2.1. The heart as a pump
- 42.2.2. Systolic timing intervals
- 42.2.3. Heart timings and motions
- 42.3. Modeling a single cardiac structure
- 42.3.1. I and Q generation and directional processing
- 42.3.2. Filtering and instantaneous amplitude
- 42.3.3. Instantaneous frequency
- 42.4. Multiple cardiac structures
- 42.5. FHR via autocorrelation
- 42.5.1. Double beating
- 42.6. Summary
- Chapter 43: Bandpass sampling
- 43.1. Baseband and bandpass signals
- 43.1.1. Baseband signals revisited
- 43.1.2. Bandpass signals
- 43.1.3. Integer band sampling
- 43.2. Bandpass sampling requirements
- 43.2.1. Constraint on fH
- 43.2.2. Constraint on fL
- 43.2.3. Overall constraints
- 43.3. Illustration of acceptable sampling rates
- 43.3.1. Optimal sampling rate
- 43.4. Examples
- 43.4.1. Example 1
- 43.4.2. Example 2: Doppler ultrasound
- 43.5. Direct digital demodulation
- 43.5.1. Samples from a sinusoid
- 43.5.2. Optimal sampling revisited
- 43.5.3. Decimation
- 43.6. Summary
- 43.7. Problems
- Chapter 44: Pulsed operation
- 44.1. Introduction
- 44.2. Pulsed timings
- 44.3. Sampling rate: fp
- 44.4. VmaxZmax constraint
- 44.5. Summary
- 44.6. Problems
- Part 6: Appendices for DUS-FHR
- Chapter 45: Compound angle identities
- 45.1. Sums to products
- 45.2. Mixing
- Chapter 46: Complex numbers
- 46.1. Arithmetic
- Chapter 47: Modeling with Matlab®
- 47.1. Processing code
- 47.1.1. FFT and related functions
- 47.1.2. Convolution
- 47.2. Discrete modeling of analogue signals
- 47.3. Using harmonics
- 47.3.1. From harmonics to frequencies
- 47.4. Spectral leakage
- 47.4.1. Non-integer harmonics
- 47.4.2. Windowed
- 47.5. Sampling
- 47.6. Hilbert transform: instantaneous amplitude and frequency
- 47.6.1. Instantaneous amplitude
- 47.6.2. Instantaneous frequency from instantaneous phase
- Bibliography
- Index
- Edition: 1
- Published: November 12, 2024
- Imprint: Academic Press
- No. of pages: 436
- Language: English
- Paperback ISBN: 9780323954723
- eBook ISBN: 9780323954730
JC
John Crowe
John Crowe retired in 2020 after working as a biomedical engineer in academia for 40 years. During this time, he worked on the development of numerous medical devices with a couple leading to the formation of spin out companies. He previously co-authored the undergraduate textbook Introduction to Digital Electronics (1998).
Affiliations and expertise
Professor Emeritus of Biomedical Engineering, Faculty of Engineering, University of Nottingham, UKRead Case Studies in Mathematical Modeling for Medical Devices on ScienceDirect