
Biophysical Approaches for the Study of Membrane Structure Part A
- 1st Edition, Volume 700 - July 4, 2024
- Imprint: Academic Press
- Editors: Tobias Baumgart, Anna Maria Pyle, Markus Deserno, David Christianson
- Language: English
- Hardback ISBN:9 7 8 - 0 - 4 4 3 - 2 9 3 0 4 - 7
- eBook ISBN:9 7 8 - 0 - 4 4 3 - 2 9 3 0 5 - 4
Biophysical Approaches for the Study of Membrane Structure, Part A, Volume 700 explores lipid membrane asymmetry and lateral heterogeneity. A burst of recent research has shown… Read more
Purchase options

Other sections cover Using the yeast vacuole as a system to test the lipid drivers of membrane heterogeneity in living cells, Direct quantification of cellular membrane lipids using ratiometric fluorescence sensors, The spectral phasor approach to resolving membrane order with environmentally sensitive dyes, The use of hemifusion to create asymmetric giant unilamellar vesicles: Insights on induced order domains, Advanced microscopy methods to study membrane pores, Use of cryo-EM to study membrane phase separation, and much more.
- Explore the state-of-the-art of lipid membrane asymmetry
- Covers experimental, theoretical, and computational techniques to create and characterize asymmetric lipid membranes
- Teaches how these kinds of approaches create and characterize laterally inhomogeneous membranes
Tobias Baumgart and Markus Deserno
1. Evaluation of functional transbilayer coupling in live cells by controlled lipid exchange and imaging FCS
Nirmalya Bag, Arpita Tripathy and Sudipti Priyadarsinee
2. Fluorescence imaging of lamellipodin mediated biomolecular condensates on solid supported lipid bilayer membranes
Tobias Baumgart
3. Effects of lateral and hydrostatic pressure on membrane structure and properties
Nick Brooks
4. Using the yeast vacuole as a system to test the lipid drivers of membrane heterogeneity in living cells
Itay Budin, Israel Juarez-Contreras and Hyesoo Kim
5. The spectral phasor approach to resolving membrane order with environmentally sensitive dyes
Rumiana Dimova and Agustín Mangiarotti
6. The use of hemifusion to create asymmetric giant unilamellar vesicles: Insights on induced order domains
Thais A. Enoki
7. Advanced microscopy methods to study membrane pores
Ana J. García-Sáez
8. Use of cryo-EM to study membrane phase separation
Frederick Heberle and M. Neal Waxham
9. Using lipid binding proteins and advanced microscopy to study lipid domains
TOSHIHIDE KOBAYASHI, NARIO TOMISHIGE, KOHTA TAKAHASHI, BRIGITTE POLLET, LUDOVIC RICHERT and YVES MÉLY
10. Structural characterization of lateral phase separation in polymer-lipid hybrid membranes
Cecília Leal, Nurila Kambar, Minh N. Do, Corey Snyder and Yoo Kyung Go
11. Applications of phase-separating multi-bilayers in protein-membrane domain interactions
Kandice R. Levental and Hong-Yin Wang
12. Studying lipid flip-flop using NMR and TR-SANS
Drew Marquardt, Dominik Dziura and Maksymilian Dziura
13. Thickness determination of hydroperoxidized lipid bilayers from medium-resolution cryo-TEM images
Carlos Marques, André Schroder, Marc Schmutz, Pierre Muller and Eulalie J. Lafarge
14. Structure of symmetric and asymmetric lipid membranes from joint SAXS/SANS
Georg Pabst, Enrico Semeraro and Moritz Frewein
15. Quantification of membrane geometry and protein sorting on cell membrane protrusions using fluorescence microscopy
Zheng Shi and Shilong Yang
16. A TIRF microscopy-based method for observing the uptake of individual particles by clathrin mediated endocytosis
Jeanne Stachowiak, Grant Ashby, Kayla Keng and Carl Hayden
17. Pore-spanning membranes as a tool to investigate lateral lipid membrane heterogeneity
Claudia Steinem and Larissa Socrier
18. MαCD based plasma membrane outer leaflet lipid exchange in mammalian cells to study insulin receptor activity
Pavana Suresh and Erwin London
- Edition: 1
- Volume: 700
- Published: July 4, 2024
- Imprint: Academic Press
- Language: English
TB
Tobias Baumgart
MD
Markus Deserno
DC
David Christianson
After completing studies for the A.B., A.M., and Ph.D. degrees in chemistry at Harvard University, David W. Christianson joined the faculty of the University of Pennsylvania, where he is currently the Roy and Diana Vagelos Professor in Chemistry and Chemical Biology. At Penn, Christianson’s research focuses on the structural and chemical biology of the zinc-dependent histone deacetylases as well as enzymes of terpene biosynthesis. His research accomplishments have been recognized by several awards, including the Pfizer Award in Enzyme Chemistry and the Repligen Award in Chemistry of Biological Processes from the American Chemical Society, a Guggenheim Fellowship, and the Elizabeth S. and Richard M. Cashin Fellowship from the Radcliffe Institute for Advanced Study at Harvard University. Christianson is also a dedicated classroom teacher, and his accomplishments in this regard have been recognized by the Lindback Award for Distinguished Teaching at Penn and a Rhodes Trust Inspirational Educator Award from Oxford University. Christianson has also held visiting professorships in the Department of Biochemistry at Cambridge University and the Department of Chemistry and Chemical Biology at Harvard University. Christianson has served with Prof. Anna Pyle as Co-Editor-in-Chief of Methods in Enzymology since 2015.