LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
As biomechanics is fundamental to understanding the normal and pathological functions of the aorta, Biomechanics of the Aorta presents a holistic analysis of aortic physiolog… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
As biomechanics is fundamental to understanding the normal and pathological functions of the aorta, Biomechanics of the Aorta presents a holistic analysis of aortic physiology, clinical imaging, tissue and blood flow modeling. It investigates a wide range of topics from basic sciences (vascular biology, continuum mechanics, image analysis) to essential knowledge for clinical applications, including diagnostics, aortic rupture prediction, as well as surgical planning. Expert chapter authors describe and present computational studies and experimental benches, to mimic, understand and propose the best treatment of aortic pathologies.
Divided into five parts, the book begins with an introduction to the fundamental aspects of the anatomy, biology, and physiopathology of the aorta, and then proceeds to present concepts of imaging and tissue/rheology characterization, tissue modeling and rupture, and flow modeling and algorithms. The final part dives into applications and case studies including transcatheter aortic valve implantation, aortic aneurysm rupture prediction, aortic dissections, and pharmacological treatments.
PART 1 Anatomy, biology, physiopathology
1. Physiopathology
2. Genetics of aortic disease
3. Mechanobiology of aortic cells and extracellular matrix
4. Clinical treatment options
PART 2 Imaging and tissue/rheology characterization
5. Novel experimental methods to characterize the mechanical properties of the aorta
6. Imaging aortic flows in 4D using MRI
7. Ultrasound imaging for aortic biomechanics
8. Functional imaging, focus on [18F]FDG positron emission tomography
9. Image processing: Deep learning for aorta model reconstruction
PART 3 Tissue modeling and rupture
10. On simulation of the biophysical behavior of the aortic heart valve interstitial cell
11. Abdominal Aortic Aneurysm and thrombus modeling
12. Computational modeling of aneurysm growth in mechanobiology
13. Analysis of aortic rupture: A computational biomechanics perspective
14. Multiscale modeling of aortic mechanics: Tissue, network, and protein
PART 4 Flow modeling and algorithm
15. Multiphysics flow modeling in the aorta
16. Novel Approaches for the numerical solution of fluid-structure interaction in the Aorta
17. Turbulence modeling of blood flow
18. Inverse problems in aortic flow modeling
19. Modeling of flow induced mechanosignaling
20. Reduced order modeling of cardiovascular hemodynamics
PART 5 Applications
21. Transcatheter aortic valve implantation (TAVI)
22. Abdominal Aortic Aneurysm rupture prediction
23. (T)EVAR simulation
24. Fluid Structure Interaction (FSI) in aortic dissections
25. Pharmacological treatments, mouse models, and the aorta
TG
SA
JE