LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Bio-Nanoimaging: Protein Misfolding & Aggregation provides a unique introduction to both novel and established nanoimaging techniques for visualization and character… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Bio-Nanoimaging: Protein Misfolding & Aggregation provides a unique introduction to both novel and established nanoimaging techniques for visualization and characterization of misfolded and aggregated protein species. The book is divided into three sections covering:
- Nanotechnology and nanoimaging technology, including cryoelectron microscopy of beta(2)-microglobulin, studying amyloidogensis by FRET; and scanning tunneling microscopy of protein deposits
- Polymorphisms of protein misfolded and aggregated species, including fibrillar polymorphism, amyloid-like protofibrils, and insulin oligomers
- Polymorphisms of misfolding and aggregation processes, including multiple pathways of lysozyme aggregation, misfolded intermediate of a PDZ domain, and micelle formation by human islet amyloid polypeptide
Protein misfolding and aggregation is a fast-growing frontier in molecular medicine and protein chemistry. Related disorders include cataracts, arthritis, cystic fibrosis, late-onset diabetes mellitus, and numerous neurodegenerative diseases like Alzheimer's and Parkinson's. Nanoimaging technology has proved crucial in understanding protein-misfolding pathologies and in potential drug design aimed at the inhibition or reversal of protein aggregation. Using these technologies, researchers can monitor the aggregation process, visualize protein aggregates and analyze their properties.
Researchers and post-graduate students studying molecular medicine and molecular basis of disease, biotechnology, nanomedicine, pharmacology and drug discovery, molecular and cellular biology, biochemistry, biophysics, structural biology
VU
Prof. Vladimir N. Uversky, PhD, DSc, FRSB, FRSC, F.A.I.M.B.E., Professor at the Department of Molecular Medicine, Morsani College of Medicine, University of South Florida (USF), is a pioneer in the field of protein intrinsic disorder. He has made a number of groundbreaking contributions in the field of protein folding, misfolding, and intrinsic disorder. He obtained his academic degrees from Moscow Institute of Physics and Technology (Ph.D., in 1991) and from the Institute of Experimental and Theoretical Biophysics, Russian Academy of Sciences (D.Sc., in 1998). He spent his early career working mostly on protein folding at the Institute of Protein Research and the Institute for Biological Instrumentation (Russia). In 1998, moved to the University of California Santa Cruz. In 2004, joined the Indiana University−Purdue University Indianapolis as a Senior Research Professor. Since 2010, Professor Uversky is with USF, where he works on various aspects of protein intrinsic disorder phenomenon and on analysis of protein folding and misfolding processes. Prof. Uversky has authored over 1250 scientific publications and edited several books and book series on protein structure, function, folding, misfolding, and intrinsic disorder. He is also serving as an editor in a number of scientific journals. He was a co-founder of the Intrinsically Disordered Proteins Subgroup at the Biophysical Society and the Intrinsically Disordered Proteins Gordon Research Conference. Prof. Uversky collaborated with more than 12,500 colleagues from more than 2,750 research organizations in 89 countries/territories.