Basic Real and Abstract Analysis focuses on the processes, methodologies, and approaches involved in the process of abstraction of mathematical problems. The book first offers information on orientation and sets and spaces, including equivalent and infinite sets, metric spaces, cardinals, distance and relative properties, real numbers, and absolute value and inequalities. The text then takes a look at sequences and series and measure and integration. Topics include rings and additivity, Lebesgue integration, outer measures and measurability, extended real number system, sequences in metric spaces, and series of real numbers. The publication ponders on measure theory, continuity, derivatives, and Stieltjes integrals. Discussions focus on integrators of bounded variation, Lebesgue integral relations, exponents and logarithms, bounded variation, mean values, trigonometry, and Fourier series. The manuscript is a valuable reference for mathematicians and researchers interested in the process of abstraction of mathematical equations.