Skip to main content

Artificial Intelligence for Subsurface Characterization and Monitoring

  • 1st Edition - November 1, 2024
  • Editor: Aria Abubakar
  • Language: English
  • Paperback ISBN:
    9 7 8 - 0 - 4 4 3 - 2 3 5 1 7 - 7
  • eBook ISBN:
    9 7 8 - 0 - 4 4 3 - 2 2 4 2 2 - 5

Artificial Intelligence for Subsurface Characterization and Monitoring provides an in-depth examination of how deep learning accelerates the process of subsurface character… Read more

Artificial Intelligence for Subsurface Characterization and Monitoring

Purchase options

Limited Offer

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Institutional subscription on ScienceDirect

Request a sales quote

Artificial Intelligence for Subsurface Characterization and Monitoring provides an in-depth examination of how deep learning accelerates the process of subsurface characterization and monitoring and provides an end-to-end solution. In recent years, deep learning has been introduced to the geoscience community to overcome some longstanding technical challenges. This book explores some of the most important topics in this discipline to explain the unique capability of deep learning in subsurface characterization for hydrocarbon exploration and production and for energy transition. Readers will discover deep learning methods that can improve the quality and efficiency of many of the key steps in subsurface characterization and monitoring.

The text is organized into five parts. The first two parts explore deep learning for data enrichment and well log data, including information extraction from unstructured well reports as well as log data QC and processing. Next is a review of deep learning applied to seismic data and data integration, which also covers intelligent processing for clearer seismic images and rock property inversion and validation. The closing section looks at deep learning in time lapse scenarios, including sparse data reconstruction for reducing the cost of 4D seismic data, time-lapse seismic data repeatability enforcement, and direct property prediction from pre-migration seismic data.