LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Artificial Intelligence and Machine Learning for Predictive and Analytical Rendering in Edge Computing focuses on the role of AI and machine learning as it impacts and works alo… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Artificial Intelligence and Machine Learning for Predictive and Analytical Rendering in Edge Computing focuses on the role of AI and machine learning as it impacts and works alongside Edge Computing. Sections cover the growing number of devices and applications in diversified domains of industry, including gaming, speech recognition, medical diagnostics, robotics and computer vision and how they are being driven by Big Data, Artificial Intelligence, Machine Learning and distributed computing, may it be Cloud Computing or the evolving Fog and Edge Computing paradigms.
Challenges covered include remote storage and computing, bandwidth overload due to transportation of data from End nodes to Cloud leading in latency issues, security issues in transporting sensitive medical and financial information across larger gaps in points of data generation and computing, as well as design features of Edge nodes to store and run AI/ML algorithms for effective rendering.
Computer scientists and researchers in applied informatics, Artificial Intelligence, data science, Cloud computing, networking, and information technology.
RP
Dr. Rajiv Pandey is a Faculty member at Amity Institute of Information Technology, Amity University, Uttar Pradesh, Lucknow Campus, India. He possesses a diverse background experience of around 35 years to include 15 years in industry and 20 years of academic research and instruction. His research interests include blockchain and crypto currencies, information security, semantic web provenance, Cloud computing, Big Data, and Data Analytics. Dr. Pandey is a Senior Member of IEEE and has been a session chair and technical committee member for various IEEE conferences. He has been on the technical committees of various government and private universities, and is the editor of Quantum Computing: A Shift from Bits to Qubits from Springer, Data Modelling and Analytics for the Internet of Medical Things from CRC Press/Taylor & Francis, and Artificial Intelligence and Machine Learning for Edge Computing from AP/Elsevier.
SK
NS
Dr. Neeraj Kumar Singh is an Associate Professor of Computer Science at INPT-ENSEEIHT and member of the ACADIE team at IRIT. Before joining INPT, Dr. Singh worked as a research fellow and team leader at the Centre for Software Certification (McSCert), McMaster University, Canada. He worked as a research associate in the Department of Computer Science at University of York, UK. He also worked as a research scientist at the INRIA Nancy Grand Est Centre, France, where he has received his Ph.D. in Computer Science. He leads his research in the area of theory and practice of rigorous software engineering and formal methods to design and implement safe, secure, and dependable critical systems. He is an active participant in the “Pacemaker Grand Challenge.” Dr. Singh is the author/editor of Quantum Computing: A Shift from Bits to Qubits and Using Event-B for Critical Device Software Systems from Springer, Essential Computer Science: A Programmer’s Guide to Foundational Concepts and Industrial System Engineering for Drones from APress, and System on Chip Interfaces for Low Power Design from Morgan Kaufmann/Elsevier.
PV