LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Applications of Nonlinear Fiber Optics, Third Edition presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techni… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
1 Fiber Gratings1.1 Basic Concepts1.1.1 Bragg Diffraction1.1.2 Photosensitivity1.2 Fabrication Techniques1.2.1 Single-Beam Internal Technique1.2.2 Dual-Beam Holographic Technique1.2.3 Phase-Mask Technique1.2.4 Point-by-Point Fabrication Technique1.2.5 Technique Based on Ultrashort Optical Pulses1.3 Grating Characteristics1.3.1 Coupled-Mode Equations1.3.2 CW Solution in the Linear Case1.3.3 Photonic Bandgap1.3.4 Grating as an Optical Filter1.3.5 Experimental Verification1.4 CW Nonlinear Effects1.4.1 Nonlinear Dispersion Curves1.4.2 Optical Bistability1.5 Modulation Instability1.5.1 Linear Stability Analysis1.5.2 Effective NLS Equation1.5.3 Experimental Results1.6 Nonlinear Pulse Propagation1.6.1 Bragg Solitons1.6.2 Relation to NLS Solitons1.6.3 Experiments on Bragg Solitons1.6.4 Nonlinear Switching1.6.5 Effects of Birefringence1.7 Related Periodic Structures1.7.1 Long-Period Gratings1.7.2 Nonuniform Bragg Gratings1.7.3 Transient and Dynmaic GratingsProblemsReferences
2 Directional Couplers2.1 Coupler Characteristics2.1.1 Coupled-Mode Equations2.1.2 Low-Power CW Beams2.1.3 Linear Pulse Switching2.2 Nonlinear Effects2.2.1 Quasi-CW Switching2.2.2 Experimental Results2.2.3 Nonlinear Supermodes2.2.4 Modulation Instability2.3 Ultrashort Pulse Propagation2.3.1 Nonlinear Switching of Optical Pulses2.3.2 Variational Approach2.3.3 Coupler-Paired Solitons2.3.4 Higher-Order Effects2.4 Other Types of Couplers2.4.1 Asymmetric Couplers2.4.2 Active Couplers2.4.3 Grating-Assisted Couplers2.4.4 Birefringent Couplers2.5 Multicore Fiber Couplers2.5.1 Dual-Core Photonic Crystal Fibers2.5.2 Multicore FibersProblemsReferences
3 Fiber Interferometers3.1 Fabry–Perot and Ring Resonators3.1.1 Transmission Resonances3.1.2 Optical Bistability3.1.3 Nonlinear Dynamics and Chaos3.1.4 Modulation Instability3.1.5 Cavity Solitons and their applications3.2 Sagnac Interferometers3.2.1 Nonlinear Transmission3.2.2 Nonlinear Switching3.2.3 Applications3.3 Mach–Zehnder Interferometers3.3.1 Nonlinear Characteristics3.3.2 Applications3.4 Michelson InterferometersProblemsReferences
4 Fiber Amplifiers4.1 Basic Concepts4.1.1 Pumping and Gain Coefficient4.1.2 Amplifier Gain and Bandwidth4.1.3 Amplifier Noise4.2 Erbium-Doped Fiber Amplifiers4.2.1 Gain Spectrum4.2.2 Amplifier Gain4.2.3 Amplifier Noise4.3 Dispersive and Nonlinear Effects4.3.1 Maxwell–Bloch Equations4.3.2 Ginzburg–Landau Equation4.4 Modulation Instability4.4.1 Distributed Amplification4.4.2 Periodic Lumped Amplification4.4.3 Noise Amplification4.5 Amplifier Solitons4.5.1 Properties of Autosolitons4.5.2 Maxwell–Bloch Solitons4.6 Pulse Amplification4.6.1 Anomalous-Dispersion Regime4.6.2 Normal-Dispersion Regime4.6.3 Higher-Order Effects4.7 Fiber-Optic Raman Amplifiers4.7.1 Pulse Amplification through Raman Gain4.7.2 Self-Similar Evolution and Similariton FormationProblemsReference
5 Fiber Lasers5.1 Basic Concepts5.1.1 Pumping and Optical Gain5.1.2 Cavity Design5.1.3 Laser Threshold and Output Power5.2 CW Fiber Lasers5.2.1 Nd-Doped Fiber Lasers5.2.2 Yb-Doped Fiber Lasers5.2.3 Erbium-Doped Fiber Lasers5.2.4 DFB Fiber Lasers5.2.5 Self-Pulsing and Chaos5.3 Short-Pulse Fiber Lasers5.3.1 Q-Switched Fiber Lasers5.3.2 Physics of Mode Locking5.3.3 Active Mode Locking5.3.4 Harmonic Mode Locking5.4 Passive Mode Locking5.4.1 Saturable Absorbers5.4.2 Nonlinear Fiber-Loop Mirrors5.4.3 Nonlinear Polarization Rotation5.4.4 Hybrid Mode Locking5.4.5 Other Mode-Locking Techniques5.5 Role of Fiber Nonlinearity and Dispersion5.5.1 Saturable-Absorber Mode Locking5.5.2 Additive-Pulse Mode Locking5.5.3 Spectral Sidebands and Pulse Width5.5.4 Phase Locking and Soliton Collision5.5.5 Polarization EffectsProblemsReferences
6 Pulse Compression6.1 Physical Mechanism6.2 Grating-Fiber Compressors6.2.1 Grating Pair6.2.2 Optimum Compressor Design6.2.3 Practical Limitations6.2.4 Experimental Results6.3 Soliton-Effect Compressors6.3.1 Compressor Optimization6.3.2 Experimental Results6.3.3 Higher-Order Nonlinear Effects6.4 Fiber Bragg Gratings6.4.1 Gratings as a Compact Dispersive Element6.4.2 Grating-Induced Nonlinear Chirp6.4.3 Bragg-Soliton Compression6.5 Chirped-Pulse Amplification6.5.1 Chirped Fiber Gratings6.5.2 Photonic Crystal Fibers6.6 Dispersion-Managed Fibers6.6.1 Dispersion-Decreasing Fibers6.6.2 Comb-like Dispersion Profiles6.7 Other Compression Techniques6.7.1 Cross-Phase Modulation6.7.2 Gain Switching in Semiconductor Lasers6.7.3 Optical Amplifiers6.7.4 Fiber-Loop Mirrors and Other DevicesProblemsReferences
7 Fiber-Optic Communications7.1 System Basics7.1.1 Loss Management7.1.2 Dispersion Management7.2 Impact of Fiber Nonlinearities7.2.1 Stimulated Brillouin Scattering7.2.2 Stimulated Raman Scattering7.2.3 Self-Phase Modulation7.2.4 Cross-Phase Modulation7.2.5 Four-Wave Mixing7.3 Solitons in Optical Fibers7.3.1 Properties of Optical Solitons7.3.2 Loss-Managed Solitons7.3.3 Dispersion-Managed Solitons7.3.4 Timing Jitter7.4 Pseudo-Linear Lightwave Systems7.4.1 Intrachannel Nonlinear Effects7.4.2 Intrachannel XPM7.4.3 Intrachannel FWM7.5 Coherent Detection7.5.1 Symbols, Baud, and Modulation Formats7.5.2 Heterodyne Detection7.5.3 Impact of Nonlinear Effects7.6 Space-Division Multiplexing7.6.1 Multicore Fibers7.6.2 Multimode FibersProblemsReferences
8 Optical Signal Processing8.1 Wavelength Conversion8.1.1 XPM-Based Wavelength Converters8.1.2 FWM-Based Wavelength Converters8.2 Ultrafast Optical Switching8.2.1 XPM-Based Sagnac-Loop Switches8.2.2 Polarization-Discriminating Switches8.2.3 FWM-Based Ultrafast Switches8.3 Applications of Time-Domain Switching8.3.1 Channel Demultiplexing8.3.2 Data-Format Conversion8.3.3 All-Optical Sampling8.4 Optical Regenerators8.4.1 SPM- and XPM-Based Regenerators8.4.2 FWM-Based Regenerators8.4.3 Phase-Preserving Regenerators8.4.4 Multichannel Optical Regenerators8.4.5 Optical 3R RegeneratorsProblemsReferences
9 Highly Nonlinear Fibers9.1 Microstructured Fibers9.1.1 Design and Fabrication9.1.2 Nonlinear and Dispersive Properties9.2 Wavelength Shifting and Tuning9.2.1 Raman-Induced Frequency Shifts9.2.2 Four-Wave Mixing9.3 Supercontinuum Generation9.3.1 Multichannel Telecommunication Sources9.3.2 Nonlinear Microscopy and Spectroscopy9.3.3 Optical Coherence Tomography9.3.4 Optical Frequency Metrology9.4 Kerr Frequency Combs9.4.1 Fiber-based Ring Cavities9.4.2 Properties of Cavity Solitons9.5 Photonic Bandgap Fibers9.5.1 Properties of Hollow-Core PCFs9.5.2 Applications of Air-Core PCFs9.5.3 Fluid-Filled Hollow-core PCFsProblemsReferences
10 Quantum Applications10.1 Quantum Theory of Pulse Propagation10.1.1 Quantum Nonlinear Schr¨odinger Equation10.1.2 Quantum Theory of Self-Phase Modulation10.1.3 Generalized NLS Equation10.1.4 Quantum Solitons10.2 Squeezing of Quantum Noise10.2.1 Physics behind Quadrature Squeezing10.2.2 FWM-Induced Quadrature Squeezing10.2.3 SPM-Induced Quadrature Squeezing10.2.4 SPM-Induced Amplitude Squeezing10.2.5 Polarization Squeezing10.3 Quantum Nondemolition Schemes10.3.1 QND Measurements through Soliton Collisions10.3.2 QND Measurements through Spectral Filtering10.4 Quantum Sources10.4.1 Single-Photon Sources10.4.2 Photon-Pair Sources10.4.3 Impact of spontaneous Raman scattering10.4.4 Heralded Single-Photon Sources10.5 Quantum Entanglement10.5.1 Polarization Entanglement10.5.2 Time-Bin Entanglement10.5.3 Continuous-Variable Entanglement10.6 Applications of Quantum States10.6.1 Quantum Cryptography10.6.2 Quantum NetworksProblemsReferences
GA