ADCS - Spacecraft Attitude Determination and Control
- 1st Edition - April 27, 2023
- Author: Michael Paluszek
- Language: English
- Paperback ISBN:9 7 8 - 0 - 3 2 3 - 9 9 9 1 5 - 1
- eBook ISBN:9 7 8 - 0 - 3 2 3 - 9 8 5 4 1 - 3
ADCS - Spacecraft Attitude Determination and Control provides a complete introduction to spacecraft control. The book covers all elements of attitude control system design, includ… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quote- Features critical details on hardware and the space environment
- Combines theory and ready-to-implement practical algorithms
- Includes MATLAB code for all examples
- Provides plots and figures generated with the included code
- Cover image
- Title page
- Table of Contents
- Copyright
- Dedication
- List of figures
- List of examples
- Biography
- Michael Paluszek (1954–)
- Preface
- Acknowledgments
- Chapter 1: Introduction
- Abstract
- 1.1. Overview of the book
- 1.2. Types of spacecraft
- 1.3. Courses based on this book
- References
- Chapter 2: History
- Abstract
- 2.1. Space story
- 2.2. Introduction
- 2.3. Pre-1950 – dreaming of space
- 2.4. 1950s – getting started
- 2.5. 1960s – the Golden Age: Apollo to the moon
- 2.6. 1970s – the Space Shuttle era
- 2.7. 1980s – internationalization
- 2.8. 1990s – Hubble
- 2.9. 2000s – commercial space is reborn
- 2.10. 2010s – the space station and beyond
- 2.11. The future
- References
- Chapter 3: Single-axis control
- Abstract
- 3.1. Space story
- 3.2. Introduction
- 3.3. Dynamical systems
- 3.4. Control system
- 3.5. Kalman filter
- 3.6. Simulation
- 3.7. Adding a mode
- Part 1: ADCS theory
- Chapter 4: ACS system design
- Abstract
- 4.1. Introduction
- 4.2. Design flow
- 4.3. Organization of ACS design teams
- 4.4. Requirements analysis
- 4.5. Satellite design
- Chapter 5: Kinematics
- Abstract
- 5.1. Space story
- 5.2. Introduction
- 5.3. Euler angles
- 5.4. Transformation matrices
- 5.5. Quaternions
- Chapter 6: Attitude dynamics
- Abstract
- 6.1. Space story
- 6.2. Introduction
- 6.3. Inertia matrix
- 6.4. Rigid body
- 6.5. Gyrostat
- 6.6. Dual spin
- 6.7. Gravity gradient
- 6.8. Nutation dynamics
- 6.9. Planar slosh model
- 6.10. N-body hub with single degree-of-freedom hinges
- 6.11. N-body hub with wheels
- 6.12. Control-moment gyros
- 6.13. Flexible structures
- References
- Chapter 7: Environment
- Abstract
- 7.1. Space story
- 7.2. Introduction
- 7.3. Optical environment
- 7.4. Atmosphere
- 7.5. Plasma
- 7.6. Gravity
- 7.7. Magnetic fields
- 7.8. Ionizing radiation
- References
- Chapter 8: Disturbances
- Abstract
- 8.1. Space story
- 8.2. Introduction
- 8.3. External disturbances
- 8.4. Internal disturbances
- 8.5. Fourier-series representation
- References
- Chapter 9: Budgets
- Abstract
- 9.1. Introduction
- 9.2. Pointing budgets
- 9.3. Propellant budgets
- 9.4. Power budgets
- 9.5. Mass budgets
- Chapter 10: Actuators
- Abstract
- 10.1. Space story
- 10.2. Introduction
- 10.3. Types of actuators
- 10.4. Reaction-wheel model
- 10.5. Control-moment gyro
- 10.6. Thrusters
- 10.7. Magnetic torquers
- 10.8. Solenoids
- 10.9. Stepping motor
- 10.10. Dampers
- References
- Chapter 11: Sensors
- Abstract
- 11.1. Space story
- 11.2. Introduction
- 11.3. Types of sensors
- 11.4. Planetary optical sensors
- 11.5. Gyros
- 11.6. Other sensors
- 11.7. Star cameras
- 11.8. GPS
- References
- Chapter 12: Attitude control
- Abstract
- 12.1. Space story
- 12.2. Introduction
- 12.3. Attitude control phases
- 12.4. Attitude control system
- 12.5. Single-axis control
- 12.6. Three-axis control
- 12.7. Gravity-gradient control
- 12.8. Nutation control
- 12.9. Momentum-bias Earth-pointing control
- 12.10. Mixed control
- 12.11. Magnetic-torquer-only control
- 12.12. Low-bandwidth small-angle control
- 12.13. Lyapunov control
- 12.14. Orbit-transfer maneuver
- 12.15. Docking
- 12.16. Command distribution
- 12.17. Attitude profile design
- 12.18. Actuator sizing
- References
- Chapter 13: Momentum control
- Abstract
- 13.1. Space story
- 13.2. Introduction
- 13.3. Momentum growth
- 13.4. Control algorithms
- 13.5. Control-torque generation
- Chapter 14: Attitude estimation
- Abstract
- 14.1. Introduction
- 14.2. Star sensor
- 14.3. Planet sensor
- 14.4. Sun sensor
- 14.5. Magnetometer
- 14.6. GPS
- 14.7. Earth/Sun/magnetic field
- 14.8. Noise filters
- References
- Chapter 15: Recursive attitude estimation
- Abstract
- 15.1. Introduction
- 15.2. Batch methods
- 15.3. Vector measurements
- 15.4. Disturbance estimation
- 15.5. Stellar-attitude determination
- 15.6. Kalman filter with roll, pitch, and yaw and a gyro
- 15.7. Kalman filter with a quaternion measurement
- Chapter 16: Simulation
- Abstract
- 16.1. Space story
- 16.2. Introduction
- 16.3. Digital simulation
- 16.4. Applications of simulation
- 16.5. Artificial damping
- References
- Chapter 17: Testing
- Abstract
- 17.1. Space story
- 17.2. A testing methodology
- 17.3. Reliability
- 17.4. Flight-vehicle control-system testing
- 17.5. Test levels (preflight)
- 17.6. Test levels (flight)
- 17.7. Simulations
- 17.8. Software-development standards
- References
- Chapter 18: Spacecraft operations
- Abstract
- 18.1. Space story
- 18.2. Introduction
- 18.3. Preparing for a mission
- 18.4. Elements of flight operations
- 18.5. Mission-operations timeline
- 18.6. Mission-operations entities
- 18.7. Mission-operations preparation
- 18.8. Mission-operations organization
- 18.9. Mission-control center
- 18.10. Mission-operations example
- Part 2: Design examples
- Chapter 19: Passive control-system design
- Abstract
- 19.1. Introduction
- 19.2. ISS orbit
- 19.3. Gravity gradient
- 19.4. Simulations
- Chapter 20: Spinning-satellite control-system design
- Abstract
- 20.1. Introduction
- 20.2. Spinning-spacecraft operation
- 20.3. Transfer orbit
- 20.4. Spinning transfer orbit
- References
- Chapter 21: Geosynchronous-satellite control-system design
- Abstract
- 21.1. Space story
- 21.2. Introduction
- 21.3. Requirements
- 21.4. The design process
- 21.5. Mission-orbit design
- 21.6. The geometry
- 21.7. Control-system summary
- 21.8. A mission architecture
- 21.9. Design steps
- 21.10. Spacecraft overview
- 21.11. Disturbances
- 21.12. Acquisition using the dual-spin turn
- 21.13. Dynamics
- 21.14. Summary
- References
- Chapter 22: Sun-nadir pointing control
- Abstract
- 22.1. Space story
- 22.2. Introduction
- 22.3. Coordinate frames
- 22.4. Sun-nadir pointing
- 22.5. Components
- 22.6. Attitude determination
- 22.7. Control
- Chapter 23: Lander control
- Abstract
- 23.1. Space story
- 23.2. Landers
- 23.3. Landing concept of operations
- 23.4. Selenographic coordinates
- 23.5. Linear-tangent guidance law
- 23.6. Lunar-lander model
- 23.7. Optimal descent
- 23.8. Descent control
- 23.9. Terminal control
- 23.10. Altitude hold
- 23.11. Bang-bang landing algorithm
- 23.12. Simulation results
- References
- Chapter 24: James Webb Space Telescope ACS design
- Abstract
- 24.1. Requirements
- 24.2. Spacecraft model
- 24.3. Disturbances
- 24.4. Attitude maneuvers
- 24.5. Momentum control
- 24.6. Attitude control
- 24.7. Torque distribution
- 24.8. Attitude determination
- 24.9. Simulation
- References
- Chapter 25: CubeSat control system
- Abstract
- 25.1. Space story
- 25.2. Introduction
- 25.3. Requirements
- 25.4. Actuator and sensor selection
- 25.5. Design
- 25.6. Control-system design
- 25.7. Attitude determination
- 25.8. Simulation
- Chapter 26: Microwave Anisotropy Satellite
- Abstract
- 26.1. The WMAP mission
- 26.2. ACS overview
- 26.3. Control modes
- 26.4. Sensing and actuation
- 26.5. Control-system design
- 26.6. Nested loops
- 26.7. Simulation results
- References
- Chapter 27: Solar sails
- Abstract
- 27.1. Introduction
- 27.2. Gyrostat with a moving mass
- 27.3. Thin-membrane model
- 27.4. Momentum control
- 27.5. Attitude control
- 27.6. Architecture
- References
- Appendix A: Math
- A.1. Vectors and matrices
- A.2. Numerical integration
- A.3. Fourier series
- A.4. Spherical geometry
- A.5. The chain rule in calculus
- Appendix B: Probability and statistics
- B.1. Space story
- B.2. Introduction
- B.3. Axiomatic probability
- B.4. Binomial theorem
- B.5. Probability distributions
- B.6. Evaluating measurements
- B.7. Combining errors
- B.8. Multivariate normal distributions
- B.9. Random signals
- B.10. Outliers
- B.11. Noise models
- B.12. Monte Carlo methods
- References
- Appendix C: Time
- C.1. Time scales
- C.2. Earth rotation
- C.3. Julian date
- C.4. Time standards
- References
- Appendix D: Coordinate systems
- D.1. Earth-centered inertial coordinates
- D.2. Local vertical/local horizontal coordinates
- D.3. Heliocentric coordinates
- D.4. International Space Station coordinates
- D.5. Selenographic frame
- D.6. Areocentric (Mars) coordinates
- Appendix E: Ephemeris
- E.1. Introduction
- E.2. Planetary orbits
- E.3. Asteroid orbits
- E.4. Planetary orientation
- E.5. Asteroid dynamics
- E.6. Stars
- References
- Appendix F: Laplace transforms
- F.1. Using Laplace transforms
- F.2. Useful transforms
- Appendix G: Control theory
- G.1. Introduction
- G.2. Simple control system
- G.3. The general control system
- G.4. Fundamental relationships
- G.5. Tracking errors
- G.6. State-space closed-loop equations
- G.7. Approaches to robust control
- G.8. Single-input–single-output control design
- G.9. Digital control
- G.10. Continuous-to-discrete transformations
- G.11. Flexible-structure control
- G.12. Model-following control
- G.13. Double-integrator control
- G.14. Lyapunov control
- G.15. First- and second-order systems
- G.16. Inner and outer loops
- Appendix H: Estimation theory
- H.1. Estimation theory
- H.2. The Kalman-filter algorithm
- H.3. Bayesian derivation
- H.4. Extended Kalman filter
- H.5. Unscented Kalman filter
- H.6. UKF state-prediction step
- H.7. Kalman-filter example
- References
- Appendix I: Orbit theory
- I.1. Space story
- I.2. Introduction
- I.3. Representations of orbits
- I.4. Propagating orbits
- I.5. Gravitational acceleration
- I.6. Linearized orbit equations
- Appendix J: Optics
- J.1. Optical sensors
- J.2. Radiometry
- References
- Appendix K: Star-camera algorithms
- K.1. Space story
- K.2. Introduction
- K.3. Center-of-mass star centroiding
- K.4. Star identification
- K.5. Fine centroiding
- References
- Appendix L: Magnetic-hysteresis damping
- L.1. Magnetic-hysteresis damper model
- L.2. Energy-dissipation analysis
- References
- Appendix M: Machine intelligence
- M.1. Space story
- M.2. Introduction
- M.3. Branches of machine intelligence
- M.4. Stored command lists
- M.5. Deep Space 1
- M.6. Neural networks
- M.7. Static Earth sensors
- M.8. Expert systems
- M.9. Reinforcement learning
- References
- Appendix N: Glossary of acronyms
- Index
- No. of pages: 738
- Language: English
- Edition: 1
- Published: April 27, 2023
- Imprint: Elsevier
- Paperback ISBN: 9780323999151
- eBook ISBN: 9780323985413
MP
Michael Paluszek
Mr. Paluszek is President of Princeton Satellite Systems (PSS), which he founded in 1992. He holds an Engineer’s degree in Aeronautics and Astronautics (1979), an SM in Aeronautics and Astronautics (1979), and an SB in Electrical Engineering (1976), all from MIT. He is the PI on the ARPA-E OPEN grant to develop a compact nuclear fusion reactor based on the Princeton Field Reversed Configuration concept. He is also PI on the ARPA-E GAMOW project to develop power electronics for the fusion industry. He is PI on a project to design a closed-loop Brayton Cycle heat engine for space applications. Prior to founding PSS, he worked at GE Astro Space in East Windsor, NJ. At GE, he designed or led the design of several attitude control systems including GPS IIR, Inmarsat 3, and GGS Polar platform. He also was an ACS analyst on over a dozen satellite launches, including the GSTAR III recovery. Before joining GE, he worked at the Draper Laboratory and at MIT, where he still teaches Attitude Control Systems (course 16.S685/16.S890). He has 14 patents registered to his name.