
A Course of Mathematics for Engineerings and Scientists
Volume 4
- 1st Edition - January 1, 1964
- Imprint: Pergamon
- Authors: Brian H. Chirgwin, Charles Plumpton
- Language: English
- Paperback ISBN:9 7 8 - 1 - 4 8 3 1 - 2 2 3 8 - 0
- Hardback ISBN:9 7 8 - 0 - 0 8 - 0 0 9 3 7 7 - 2
- eBook ISBN:9 7 8 - 1 - 4 8 3 1 - 5 4 8 0 - 0
A Course of Mathematics for Engineers and Scientists offers a mathematics course for undergraduate students reading science and engineering at British and Commonwealth Universities… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteA Course of Mathematics for Engineers and Scientists offers a mathematics course for undergraduate students reading science and engineering at British and Commonwealth Universities and colleges. The aim of this volume is to generalize and develop the ideas and methods of earlier volumes so that the student can appreciate and use the mathematical methods required in the more advanced parts of physics and engineering. This book begins with elementary ideas of vector algebra which are generalized and developed in two ways. The first is an account of vector analysis and the differential and integral operations and theorems concerning vectors. These ideas find their first generalization in tensor analysis and the transformation of coordinates, including orthogonal curvilinear coordinates. The second development is to matrices, where the properties of arrays of elements, linear equations, and quadratic forms are shown to be the generalizations of elementary algebra and, using 'vector space', of familiar geometrical ideas to n dimensions. The solution of differential equations by series provides a general method for the solution of ordinary and some partial differential equations. A discussion of the properties of the solutions in the light of the Sturm-Liouville theory introduces the conceptions of eigenvalues and orthogonal functions, forming a link with matrices. A chapter on the special functions gives some of the better known properties of Bessel, Legendre, Laguerre, and Hermite functions, which commonly occur in the solution of boundary and initial value problems.
Preface
Chapter I. Vector Analysis
Transformation of Coordinates
Scalar Fields: Gradient
Vector Fields
Line and Surface Integrals
Applications to Vector Analysis
Green's Theorem
Discontinuities; Surface Derivatives
Uniqueness Theorems and Green's Function
Variation with Time
Orthogonal Curvilinear Coordinates
Suffix Notation and the Summation Convention
Cartesian Tensors
Chapter II. The Solution of Some Differential Equations
Laplace's Equation in Two and Three Dimensions
Solution in Series of Ordinary Differential Equations
The Behavior of the Solution of a Differential Equation
Eigenvalues: Sturm-Liouville Systems
Chapter III. Some Special Functions
Bessel Functions
Legendre Polynomials
Other Special Functions
Chapter IV. The Differential Equation of Field Lines and Level Surfaces
Introduction
Field Lines
Lagrange's Partial Differential Equation
Level Surfaces and Orthogonal Trajectories
Chapter V. Matrices
Introduction and Notation
Matrix Algebra
The Rank of a Matrix: Singular Matrices
The Reciprocal of a Square Matrix
Partitioned Matrices
The Solution of Linear Equations
Vector Spaces
Eigenvalues and Eigenvectors
Quadratic Forms
Simultaneous Reduction of Quadratic Forms
Multiple Eigenvalues
Hermitian Matrices
Bibliography
Answers to the Exercises
Index
- Edition: 1
- Published: January 1, 1964
- No. of pages (eBook): 362
- Imprint: Pergamon
- Language: English
- Paperback ISBN: 9781483122380
- Hardback ISBN: 9780080093772
- eBook ISBN: 9781483154800
Read A Course of Mathematics for Engineerings and Scientists on ScienceDirect