
5G/5G-Advanced Networks
Planning, Design, and Optimization
- 2nd Edition - April 15, 2025
- Imprint: Academic Press
- Author: Christofer Larsson
- Language: English
- Paperback ISBN:9 7 8 - 0 - 4 4 3 - 3 2 9 4 0 - 1
- eBook ISBN:9 7 8 - 0 - 4 4 3 - 3 2 9 4 1 - 8
5G/5G Advanced Networks: Planning, Design and Optimization, 2nd edition, presents practical methods and algorithms for the design of 5G/5G Advanced Networks, covering topics that r… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quote- 5G/5G Advanced concepts, how they are linked and their effect on the architecture of a 5G/5G Advanced network
- Models of 5G/5G Advanced at a network level, including economic aspects of operating a network
- The economic implications of scale and service diversity, and the incentive for optimal design and operational strategies
- Network topologies from a transport to a cloud perspective
- Theoretic foundations for network design and network optimization
- Algorithms for practical design and optimization of 5G subsystems based on live network projects
- The trade-off and multi-objective character of QoS management and cost saving
- Practical traffic and resilience measurement and QoS supervision
- Frameworks for performance analytics and network control
- Design, optimization and management of network slices
- Title of Book
- Cover image
- Title page
- Table of Contents
- Copyright
- Dedication
- Preface to the second edition
- Preface
- Chapter 1: 5G concepts and technologies
- 1.1. Introduction
- 1.1.1. Big data
- 1.1.2. Energy efficiency
- 1.2. Key features of 5G/5G-Advanced
- 1.2.1. AI/ML support
- 1.2.2. Massive MIMO
- 1.2.3. Mobility
- 1.2.4. Enhancements for network slicing
- 1.2.5. Internet of Things
- 1.3. Network architecture and protocols
- 1.3.1. Centralized and distributed control
- 1.3.2. Network function virtualization
- 1.3.3. Optical fiber
- 1.3.4. SD-WAN
- 1.3.5. Impact on design
- 1.4. 5G New Radio and massive MIMO
- 1.4.1. Open RAN
- 1.4.2. Virtualized RAN
- 1.4.3. Massive MIMO
- 1.4.4. Impact on design
- 1.5. Network slicing and service differentiation
- 1.5.1. Edge computing
- 1.5.2. Impact on design
- 1.6. Security concepts
- 1.7. Performance measures
- 1.8. Design and optimization
- 1.9. Summary and programming hints
- 1.9.1. Code structure
- 1.9.2. Open source software
- 1.9.3. Unit testing
- Chapter 2: Network modeling and analysis
- 2.1. Introduction
- 2.2. Basic properties of networks
- 2.2.1. Link and node weights
- 2.2.2. File formats
- 2.3. Algorithms and complexity classes
- 2.3.1. Optimization problems
- 2.3.2. Showing problem hardness
- 2.3.3. Algorithms for hard problems
- 2.4. Graph representations
- 2.4.1. Adjacency and incidence matrices
- 2.4.2. The complement of a graph
- 2.4.3. The line graph
- 2.4.4. Planar graphs
- 2.5. Connectivity
- 2.5.1. Depth-first search
- 2.5.2. Breadth-first search
- 2.6. Shortest paths
- 2.6.1. Dijkstra's algorithm
- 2.6.2. The Bellman–Ford algorithm
- 2.7. Minimum spanning trees
- 2.7.1. Sparseness of graphs
- 2.7.2. Kruskal's algorithm
- 2.7.3. The Prim–Jarník algorithm
- 2.7.4. Stretch
- 2.8. Network flows
- 2.8.1. Basic flow theory
- 2.8.2. Maximum flow
- 2.8.3. Minimum cost flows
- 2.8.4. Multicommodity flows
- 2.9. Summary and programming hints
- 2.9.1. Implementing graph classes
- 2.9.2. Functions and testing
- 2.9.3. Python packages
- Chapter 3: Clustering, partitioning, and assignment
- 3.1. Introduction
- 3.2. Applications of clustering
- 3.3. Cluster properties and quality measures
- 3.3.1. Vertex similarity
- 3.3.2. Expansion
- 3.3.3. Coverage
- 3.3.4. Performance
- 3.3.5. Conductance
- 3.4. Heuristic clustering methods
- 3.4.1. k-Nearest neighbor
- 3.4.2. k-Means and k-median
- 3.5. Spectral clustering
- 3.5.1. Similarity matrices
- 3.5.2. Laplacians
- 3.5.3. Spectral decomposition
- 3.5.4. Dimensionality reduction
- 3.6. Matching and assignment
- 3.7. Iterative methods
- 3.7.1. Uniform graph partitioning
- 3.8. Summary and programming hints
- 3.8.1. Matrices and linear algebra
- 3.8.2. Clustering algorithms
- 3.8.3. Spectral clustering
- Chapter 4: Optimization techniques
- 4.1. Introduction
- 4.2. Multicriteria optimization
- 4.3. Mixed-integer programming
- 4.3.1. Dynamic programming
- 4.3.2. Branch-and-bound
- 4.4. Approximation and rounding
- 4.5. Evolutionary algorithms
- 4.5.1. Simulated annealing
- 4.5.2. Genetic algorithms
- 4.5.3. Swarm optimization
- 4.6. Machine learning
- 4.7. Summary and programming hints
- 4.7.1. Linear programming
- 4.7.2. Dynamic programming
- 4.7.3. Evolutionary algorithms
- Chapter 5: Information, modulation, and coding
- 5.1. Introduction
- 5.2. Information and entropy
- 5.2.1. Entropy
- 5.2.2. Joint and conditional entropy
- 5.2.3. Mutual information
- 5.3. Modulation and coding
- 5.3.1. Modulation
- 5.3.2. Coding schemes
- 5.3.3. The 5G transmitter
- 5.4. Discrete-time channels
- 5.4.1. Channel capacity
- 5.4.2. The Shannon–Hartley theorem
- 5.5. Continuous-time channels
- 5.5.1. The Gaussian channel
- 5.5.2. Bandwidth limited channels
- 5.5.3. Fading
- 5.5.4. Spatial diversity
- 5.6. Radio cell capacity
- 5.6.1. Uplink channels
- 5.6.2. Downlink channels
- 5.7. Information flow in networks
- 5.7.1. Intercell interference
- 5.7.2. Max-flow-min-cut interpretation
- 5.8. Estimation and monitoring
- 5.8.1. Large deviations
- 5.8.2. Varadhan's lemma
- 5.9. Summary and programming hints
- 5.9.1. The AWGN channel
- 5.9.2. The 5G transmitter
- Chapter 6: Radio network design
- 6.1. Introduction
- 6.2. Radio network capacity
- 6.2.1. Millimeter wave
- 6.2.2. Cell densification
- 6.2.3. Cell association
- 6.3. Antenna systems and wave propagation
- 6.3.1. Dipole antennas
- 6.3.2. Patch antennas
- 6.3.3. Phased array antennas
- 6.4. Capacity of massive MIMO channels
- 6.4.1. Point-to-point MIMO
- 6.5. Beamforming and massive MIMO
- 6.5.1. Beam sweeping
- 6.5.2. Thinning
- 6.6. Direction of arrival
- 6.6.1. The correlation method
- 6.6.2. Maximum likelihood estimation
- 6.6.3. Multiple signal classification
- 6.7. Distribution of base stations
- 6.7.1. Poisson point processes
- 6.8. Radio coverage and throughput
- 6.8.1. Radio coverage probability
- 6.8.2. Shannon rate
- 6.9. Channel assignment
- 6.9.1. Physical cell identity
- 6.9.2. PCI planning
- 6.10. Summary and programming hints
- 6.10.1. Simulating PPP
- 6.10.2. Voronoi cells
- Chapter 7: Access network design
- 7.1. Introduction
- 7.2. Backhaul technologies
- 7.3. Capacitated spanning trees
- 7.3.1. Esau–Williams algorithm
- 7.4. Steiner trees
- 7.5. Centralized radio access networks
- 7.5.1. C-RAN architecture
- 7.5.2. Resilience in access networks
- 7.6. Dimensioning of backhaul links
- 7.7. Summary and programming hints
- 7.7.1. A Steiner tree heuristic
- 7.7.2. The Esau–Williams algorithm
- 7.7.3. Dimensioning a hierarchical network
- Chapter 8: Reliability and performance analysis
- 8.1. Introduction
- 8.2. Concepts and definitions
- 8.2.1. Network cuts
- 8.2.2. Menger's theorems
- 8.3. Component reliability
- 8.3.1. Reliability
- 8.3.2. Availability
- 8.3.3. Failure models
- 8.4. System reliability
- 8.4.1. Reliability of series systems
- 8.4.2. Reliability of parallel systems
- 8.4.3. Reliability of k-out-of-n structures
- 8.5. Markov chain methods
- 8.5.1. Discrete-time Markov chains
- 8.5.2. Continuous-time Markov processes
- 8.5.3. Numerical solution of Markov chains
- 8.5.4. Randomization
- 8.5.5. Truncation of the state space
- 8.6. Bayesian estimation
- 8.6.1. Preliminaries
- 8.6.2. Bayesian point estimation
- 8.6.3. Prior distributions
- 8.6.4. The Gibbs sampler
- 8.7. Bayesian networks
- 8.8. Performance indices
- 8.9. Summary and programming hints
- 8.9.1. Markov chains
- 8.9.2. The Gibbs sampler
- 8.9.3. Bayesian networks
- Chapter 9: Capacitated network design
- 9.1. Introduction
- 9.2. Cloud transport and hosting
- 9.2.1. Mobility support
- 9.2.2. Quality-of-service
- 9.3. Uncapacitated facility location
- 9.3.1. Assignment
- 9.3.2. Pruning
- 9.3.3. Assignment and pruning in the primal-dual formulation
- 9.3.4. Conflict resolution
- 9.4. Capacitated facility location
- 9.5. Resilient facility location
- 9.6. Spanners
- 9.6.1. Properties of spanners
- 9.6.2. A greedy algorithm for spanner construction
- 9.7. Allocation of software objects
- 9.7.1. Vertex cover
- 9.7.2. Bin packing
- 9.8. Job scheduling
- 9.8.1. Rounding
- 9.8.2. The scheduler
- 9.9. Summary and programming hints
- 9.9.1. Facility location
- 9.9.2. Spanners
- 9.9.3. Vertex cover
- Chapter 10: Resilient backbone design
- 10.1. Introduction
- 10.2. Network resilience
- 10.3. Resilience measures
- 10.3.1. Minimum cuts
- 10.3.2. Spanning trees
- 10.3.3. Graph strength
- 10.3.4. The reliability polynomial
- 10.4. Link topologies
- 10.5. Minimum-cost survivable networks
- 10.5.1. Testing feasibility
- 10.5.2. Generating an initial solution
- 10.5.3. The search neighborhood
- 10.5.4. Algorithm summary
- 10.6. A primal-dual algorithm
- 10.6.1. Preliminaries
- 10.6.2. Feasibility and performance
- 10.6.3. The main algorithm
- 10.7. Incremental resilience
- 10.8. Summary and programming hints
- 10.8.1. Resilience measures
- 10.8.2. Resilience design
- Chapter 11: Traffic routing
- 11.1. Introduction
- 11.1.1. The anatomy of optical networks
- 11.1.2. Elastic optical networks
- 11.2. Routing in optical networks
- 11.2.1. Recovery and service availability
- 11.2.2. Protection and restoration
- 11.2.3. Routing protocols
- 11.3. Resilient routing
- 11.3.1. Path computation
- 11.4. Dedicated and shared backup paths
- 11.4.1. The shortest pairs problem
- 11.4.2. Average path length
- 11.4.3. Protection-to-working capacity ratio
- 11.4.4. Some general results
- 11.5. Preplanned cycle protection
- 11.5.1. Finding cycles in graphs
- 11.5.2. p-Cycle design
- 11.5.3. The straddling span approach
- 11.5.4. Node failures
- 11.6. Algorithms for backup paths
- 11.6.1. The K-shortest path
- 11.7. Wavelength assignment
- 11.7.1. Graph coloring
- 11.7.2. The Douglas–Rachford algorithm
- 11.7.3. The Bron–Kerbosch algorithm
- 11.8. Multiconditional routing
- 11.9. Summary and programming hints
- 11.9.1. Yen's algorithm
- 11.9.2. p-Cycle design
- Chapter 12: Traffic modeling and effective bandwidth
- 12.1. Introduction
- 12.2. Demand, workload, and throughput
- 12.2.1. Stochastic processes
- 12.2.2. Self-similar and long range-dependent processes
- 12.3. Causes and implications of self-similarity
- 12.3.1. Streaming and elastic traffic
- 12.3.2. Network control
- 12.3.3. The effect of TCP
- 12.4. Estimation of traffic characteristics
- 12.4.1. Variance-time analysis
- 12.4.2. The rescaled-range statistic
- 12.4.3. Wavelet multiresolution analysis
- 12.5. Models of aggregated demand
- 12.5.1. Fractional Brownian traffic
- 12.6. Effective bandwidth
- 12.6.1. The scaled cumulant generating function
- 12.6.2. Normal approximation
- 12.6.3. Improved approximation
- 12.6.4. Estimation of the scaled CGF
- 12.7. Resource allocation
- 12.7.1. Nonlinear optimization
- 12.7.2. The cut-saturation method
- 12.7.3. Moe's principle
- 12.8. Summary and programming hints
- 12.8.1. Simulating fractional Brownian motion
- 12.8.2. Wavelet multiresolution analysis
- Chapter 13: Heavy traffic analysis
- 13.1. Introduction
- 13.2. Network stability
- 13.2.1. The Wardrop equilibrium
- 13.2.2. Congestion control and fairness
- 13.2.3. A primal algorithm
- 13.2.4. Time delays
- 13.3. Networks of queues
- 13.3.1. Open Jackson networks
- 13.3.2. The routing matrix
- 13.3.3. End-to-end delay
- 13.3.4. Closed queueing networks
- 13.3.5. The product-form solution
- 13.3.6. Solving the traffic equation
- 13.3.7. Generalized queueing networks
- 13.3.8. Convolution
- 13.3.9. Mean value analysis
- 13.4. Heavy traffic analysis
- 13.4.1. Brownian motion
- 13.4.2. The heavy traffic approximation
- 13.4.3. The M/M/1/K queue
- 13.4.4. A tandem queue
- 13.4.5. General networks
- 13.5. Network control
- 13.5.1. Admission control
- 13.5.2. Rerouting
- 13.6. Simulation of heavy traffic and queues
- 13.6.1. Discrete event simulation
- 13.6.2. The Erlang link
- 13.7. Summary and programming hints
- 13.7.1. Brownian motion
- 13.7.2. Discrete-event simulation
- Chapter 14: Analytics on batch data
- 14.1. Introduction
- 14.2. Concepts and data sources
- 14.2.1. Traffic data
- 14.2.2. Subscriber profiles
- 14.2.3. Call and event data records
- 14.2.4. Network performance data
- 14.3. Artificial intelligence and machine learning
- 14.3.1. Decision trees
- 14.3.2. Neural networks
- 14.3.3. Graph neural networks
- 14.4. Cognitive network management
- 14.4.1. Fault management
- 14.4.2. Configuration management
- 14.4.3. Performance management
- 14.4.4. Accounting management
- 14.4.5. Security management
- 14.4.6. Concluding remarks
- 14.5. Self-organizing networks
- 14.5.1. Energy saving
- 14.5.2. Load balancing
- 14.5.3. Mobility management
- 14.6. Forecasting
- 14.6.1. Stationary time series
- 14.6.2. Long-range dependent traffic
- 14.7. Summary and programming hints
- 14.7.1. Decision trees
- 14.7.2. Neural networks
- Chapter 15: Analytics on streaming data
- 15.1. Introduction
- 15.2. Data collection
- 15.3. Discretization
- 15.3.1. The discretization problem
- 15.4. Data sketches
- 15.4.1. Data stream models
- 15.4.2. Hash functions
- 15.4.3. Approximate counting
- 15.4.4. Counting distinct elements
- 15.4.5. Estimation of vector norms
- 15.4.6. The AMS algorithm
- 15.4.7. The Johnson–Lindenstrauss algorithm
- 15.4.8. The median algorithm
- 15.4.9. The count-min sketch
- 15.4.10. The count-median sketch
- 15.4.11. Heavy hitters
- 15.5. Detection
- 15.6. Classification
- 15.6.1. Logistic regression
- 15.6.2. Perceptron classifier
- 15.6.3. Random forest classifier
- 15.6.4. The approximate large margin algorithm
- 15.6.5. The online passive-aggressive algorithm
- 15.7. Regression
- 15.7.1. Linear regression
- 15.7.2. Hoeffding tree regression
- 15.7.3. Stochastic gradient tree regression
- 15.7.4. Streaming random patches ensemble regressor
- 15.8. Prediction
- 15.8.1. Multiresolution estimation
- 15.8.2. The bitmap algorithm
- 15.9. Summary and programming hints
- 15.9.1. Traffic capture
- 15.9.2. Parsing the IP packet header
- 15.9.3. Streaming analytics
- Chapter 16: Dynamic resource management
- 16.1. Introduction
- 16.2. Dynamic routing
- 16.2.1. Characterization of traffic
- 16.2.2. Entropy
- 16.3. Traffic aggregation
- 16.4. Fairness and quality of service
- 16.4.1. Congestion control by traffic aggregation
- 16.4.2. Simulation of congestion control
- 16.4.3. Network topology
- 16.4.4. Node capabilities
- 16.4.5. Traffic distribution
- 16.4.6. Traffic simulation
- 16.4.7. Traffic aggregation
- 16.4.8. Routing strategy
- 16.4.9. Quality-of-service evaluation
- 16.4.10. The effect of traffic aggregation
- 16.4.11. Node-level traffic aggregation
- 16.4.12. Service-type traffic aggregation
- 16.4.13. Dynamic traffic aggregation
- 16.5. Congestion control
- 16.5.1. Traffic aggregation and minimum total delay routing
- 16.5.2. Dynamic traffic aggregation and shortest-path routing
- 16.5.3. Traffic aggregation and min-max-delay routing
- 16.6. Real-time reconfiguration
- 16.7. Summary and programming hints
- 16.7.1. Offline empirical entropy
- 16.7.2. Online empirical entropy
- Chapter 17: Network slicing
- 17.1. Introduction
- 17.2. Service differentiation
- 17.3. Service function chains
- 17.4. Orchestration
- 17.4.1. OpenStack
- 17.4.2. OpenFlow controller
- 17.5. Virtual network embedding
- 17.5.1. Node mapping
- 17.5.2. Link mapping
- 17.6. Design and dimensioning of slices
- 17.7. Slice deployment and reconfiguration
- 17.7.1. Objective function
- 17.7.2. Side conditions
- 17.7.3. Solution methods
- 17.7.4. Multidimensional resource allocation
- 17.7.5. Cloud resources and descriptors
- 17.7.6. Optimization criteria
- 17.7.7. Algorithm for resource optimization
- 17.7.8. An example
- 17.8. Summary and programming hints
- 17.8.1. Betweenness centrality
- 17.8.2. Node mapping
- Chapter 18: Internet of Things
- 18.1. Introduction
- 18.2. Applications
- 18.2.1. Building automation
- 18.2.2. Agriculture
- 18.2.3. Industrial automation
- 18.3. Field buses and industrial protocols
- 18.3.1. Multipath fading
- 18.3.2. Interference
- 18.3.3. Medium access control
- 18.3.4. Security functions
- 18.3.5. Higher layers
- 18.4. Wireless sensor networks
- 18.4.1. Routing protocols
- 18.4.2. Routing protocols for the Internet of Things
- 18.4.3. Energy models
- 18.5. Compressed sensing
- 18.6. Mobility modeling
- 18.6.1. Geometric models
- 18.6.2. Queueing models
- 18.6.3. Traffic flow theory
- 18.6.4. Other model types
- 18.6.5. Gibbsian interaction mobility model
- 18.6.6. Analysis of dependence
- 18.6.7. Fitting a distribution
- 18.6.8. Basic assumptions
- 18.6.9. Dependence structure
- 18.6.10. Simulation of source density
- 18.6.11. Gibbs sampler implementation
- 18.6.12. Simulation results
- 18.6.13. Mathematical analysis of the mobility model
- 18.6.14. Numerical solution of the one-dimensional model
- 18.6.15. Stochastic fields
- 18.6.16. Estimation for the one-dimensional model
- 18.6.17. Concluding remarks
- 18.7. Summary and programming hints
- 18.7.1. Modbus simulator
- 18.7.2. Basis pursuit
- Index
- Edition: 2
- Published: April 15, 2025
- Imprint: Academic Press
- No. of pages: 628
- Language: English
- Paperback ISBN: 9780443329401
- eBook ISBN: 9780443329418
CL
Christofer Larsson
Christofer Larsson, an Engineering Physics graduate of the Royal Institute of Technology in Stockholm, Sweden, is a consultant in network design and optimization, and a textbook author. Taking a strong interest in engineering mathematics, Christofer has during three decades in IT and telecommunications participated in the design and implementation of several successful innovative network solutions. Christofer has held positions as system designer, software architect, tester, trainer, technical writer, and manager. After a decade with Ericsson, he has been a consulting partner with system vendors, network operators and software providers, including Ericsson, NSN, Siemens, Deutsche Telekom, Vodafone-Hutchinson, and Orange