Skip to main content

Nanomaterials for Energy

Generation, Harvesting, Transmission and Storage

  • 1st Edition - January 1, 2030
  • Author: Sivaram Arepalli
  • Language: English
  • eBook ISBN:
    9 7 8 - 1 - 4 5 5 7 - 3 1 7 8 - 7

It is widely acknowledged that nanomaterials and nano-scale engineering will play a pivotal role in the energy technologies that are needed to address the global challenge of pr… Read more

Nanomaterials for Energy

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code needed.

Image of books

Institutional subscription on ScienceDirect

Request a sales quote

It is widely acknowledged that nanomaterials and nano-scale engineering will play a pivotal role in the energy technologies that are needed to address the global challenge of producing plentiful, sustainable energy for the century ahead. Arepalli explores the role of nanomaterials the development of both inexpensive, large-scale renewable energy and in clean and efficient fossil fuel based technologies.

Nanomaterials for Energy provides readers with a working knowledge of the synthesis, processing and applications of nanomaterials utilized in the generation, transmission and storage of energy. The author explains the ways in which nanomaterials are being used to improve existing energy systems, and explores how new energy systems and technologies are being made possible by the use of nanomaterials. Case studies are provided throughout, to show how the scientific principles and engineering approaches are being put into action.

Covering technologies for electricity generation (e.g. solar cells and fuel cells), energy storage (e.g. hydrogen storage, batteries and supercapacitors), energy transmission (e.g. superconductors and smart grids) and energy conservation, readers are led through the wide range of applications for nanomaterials in the renewable and conventional energy sectors. Oil and gas, nuclear energy, wind energy, solar power and geothermal energy are covered. The environmental impact, toxicity and broader health & safety aspects of nanomaterials are also investigated. The synthesis and characterization of the nanomaterials utilized in energy applications is explained in detail.

This book assumes a basic undergraduate-level background in physics and chemistry, but is accessible to a wide audience of engineers, scientists, technicians, technical managers, energy systems planners and those involved in the selection, deployment and advocacy of renewable energy systems.